STRONG QUADRATIC MODULES

BY

G. STROTH

 $Free$ Universität Berlin, 2. Mathematisches Institut *Arnimalee 3, 1000 Berlin 33, Germany*

ABSTRACT

For a Chevalley group G over a field of characteristic 2 we determine all irreducible modules V over $GF(2)$ such that $[V, R, Q] = 0$, where R is a long root group and $Q = Z_2(O_2(N_G(R)))$. As a corollary we obtain a classification of those irreducible modules admitting a quadratic fours group E which intersect a long root group nontrivially but is not contained in such a group.

Introduction

One of the main tools in the quite recent theory of parabolic systems is the knowledge of *GF(p)-modules V* for the groups involved admitting quadratically acting p-groups.

Let G be a finite simple group, V a *GF(p)G-module,* p a prime. We call V quadratic if there is a nontrivial p-subgroup E of G such that $[V, E, E] = 0$. For $p \geq 5$ the groups G possessing such a module have been studied by J. Thompson [Th]. For $p = 3$ results have been obtained by Ch.Ho [Ho]. The corresponding modules for the groups of Lie type have been classified by A.A. Premet and I.D. Suprunenko [PS]. Similar results have been obtained by U. Meierfrankenfeld [Mei]. If $p = 2$ the definition of a quadratic module is not any restriction at all as for any involution x we have $[V, x, x] = 0$. So in this case we have to add a further assumption. In [MeiStr1] and [MeiStr2] the case of G a sporadic simple group, an alternating group or a group of Lie type over a field of odd characteristic was

Received July 22, 1991 and in revised form January 28, 1992

258 G. STROTH Isr. J. Math.

investigated under the additional assumption that $|E| \geq 4$. Again this seems not to be the right condition for groups of Lie type over a field of characteristic 2, as root groups tend to act quadratically on many modules. So a classification, which might be possible, would contain a long list of modules defined over *GF(q)* (if G is defined over $GF(q)$ and so would be just too long for interesting applications. This paper is a first step in obtaining a satisfactory result for quadratic modules for Chevalley groups over $GF(q)$, $q = 2ⁿ$. We are going to prove the following theorem.

THEOREM: Let $G = G(q)$ be a Chevalley group over $GF(q)$, $q = 2ⁿ$. Let R be *a long root group and* $Q = Z_2(O_2(N_G(R)))$ *. Let V be a nontrivial irreducible GF(2)G-module with [V, R, Q] = O. Then* one of *the following holds:*

- *(i)* $G \simeq (S)L(n,q)$ or $(S)U(n,q)$ and $V = V(\lambda)$ for some fundamental weight λ.
- (ii) $G \simeq \Omega^{\pm}(2n, q)$ or $Sp(2n, q)$ and V is the natural module or a spin module.
- (iii) $G \simeq E_6(q)$ and $V = V(\lambda_1)$ or $V(\lambda_6)$.
- *(iv)* $G \simeq E_7(q)$ and $V = V(\lambda_7)$.
- (v) $G \simeq {}^2E_6(q)$ or $F_4(q)$ and $V = V(\lambda_4)$.
- *(vi)* $G \simeq G_2(q)$ or ${}^3D_4(q)$ and V is the natural module.

In section 1 we prove the Theorem, and then in sections 2 and 3 we deduce the following corollaries. In fact corollary 1 had originally inspired the work of this paper.

COROLLARY 1: Let $G = G(q)$ be a Chevalley group over $GF(q)$, $q = 2ⁿ$, and V *be a nontrivial irreducible GF(2)G-module. Let X be some nontrivial elementary* abelian 2-subgroup of G such that $[V, X, X^g] = 0$ whenever $[X, X^g] = 1, g \in G$. *Then V is one of the modules in the theorem or* $G \simeq (S)U(3, q)$ *and V is a basic* module (8-dimensional module) or $G \cong Sz(q)$ and V is the natural module.

A question like the one of corollary 1 recently occurred in a paper of Timmesfeld [Ti]. If E is a quadratic fours group we get the following corollary.

COROLLARY 2: Let $G = G(q)$ be a Chevalley group over $GF(q)$, $q = 2ⁿ$, and V *be a nontrivial irreducible GF(2)G-module. Let* E be a fours *group* such *that* $[V, E, E] = 0$. If *E* intersects some long root subgroup *R* of *G* nontrivially, but $E \nsubseteq R$, then either V is one of the modules in the theorem or $G \cong Sp(2n, q)$ or $F_4(q)$ and $V = V(\lambda)$ for some fundamental weight λ .

I do not know whether $G = F_4(q)$ and $V = V(\lambda_2)$ really occurs.

For a Chevalley group G let $q(G)$ be the minimum value of n such that the following is true: If V is an irreducible module and A is some elementary abelian subgroup of G with $[V, A, A] = 0$ and $|A| = 2ⁿ$, then V is one of the modules in corollary 2. It would be interesting to determine $q(G)$.

0. **Preliminaries**

LEMMA 0.1: Let G be a finite group and $\langle x, y \rangle \leq G$ be a fours group acting nontrivially on some irreducible $GF(2)$ G-module V. Let $x \sim y \sim xy$ and $G =$ $\langle \mathcal{C}_G(s), \mathcal{C}_G(t) \rangle$ for any pair s, t from the triple x, y, xy such that $\langle s, t \rangle = \langle x, y \rangle$. *Then* $[V, x] \cap [V, y] \neq 0$.

Proof: As V is an irreducible module we have $\mathcal{C}_V(x) \neq \mathcal{C}_V(xy)$. So

$$
[\mathcal{I}_V(xy),x]=[\mathcal{I}_V(xy),y]\neq 0.
$$

П

LEMMA (0.2): Let W be a *2-group which carries the structure* of a *2-dimensional vectorspace over* $GF(q)$ *,* $q = 2^n$ *. Let V be a* $GF(2)W$ *-module on which q of the q + 1 one-dimensional subspaces of W act quadratically. Then any onedimensional subspace of W acts quadratically.*

Proof: Let $W = W_1 W_2$ where $W_1 = \langle x_1, \ldots, x_n \rangle$, $W_2 = \langle y_1, \ldots, y_n \rangle$ and W_1, W_2 are one-spaces which act quadratically. We may assume $n \geq 2$.

Let $w_1, w'_1 \in W_1, w_2, w'_2 \in W_2, v \in V$. We first show

(1)
$$
[v, w_1w_2, w'_1w'_2] = [v, w_1, w'_2] + [v, w'_1, w_2]
$$

$$
= [v, w'_2, w_1] + [v, w_2, w'_1].
$$

For this we use freely the following general facts

$$
[v, ab] = [v, a] + [v, b] + [v, a, b]
$$
 and

$$
[v, a, b] = [v, b, a]
$$
 for commuting a, b .

We have

$$
z=[v,w_1w_2]=[v,w_1]+[v,w_2]+[v,w_1,w_2]=[v,w_2]+x=[v,w_1]+y\\
$$

where $x \in [V, W_1]$ and $y \in [V, W_2]$.

Now

$$
[v,w_1w_2,w'_1w'_2]=[z,w'_1w'_2]=[z,w'_1]+[z_1,w'_2]+[z,w'_1,w'_2].
$$

We have

 $[z, w'_1] = [v, w_2, w'_1]$ as $[x, w'_1] = 0$ by quadratic action, $[z, w'_2] = [v, w_1, w'_2]$ as $[y, w'_2] = 0$ by quadratic action, $[x, w'_1, w'_2] = [[v, w_2], w'_1, w'_2] = [[v, w_2], w'_2, w'_1] = 0$ by quadratic action.

This establishes (1).

For proving the lemma it is enough to show that for $x_1y, x_2z \in W_0, W_0$ a one-space in W , $y, z \in W_2$, we get $[v, x_1y, x_2z] = 0$ for any $v \in V$.

Let $y = \prod y_i^{m_i}$ then set $\overline{y} = \prod x_i^{m_i}$. So to x_1y, x_2z there correspond $y_1\overline{y}$ and $y_2\overline{z}$. Looking at W as a two dimensional vectorspace over $GF(q)$ implies that there is an automorphism ρ of order $q-1$ (the multiplication by field elements) which acts on W_1 and W_2 in the same way. Now the $q + 1$ one dimensional subspaces of W are just the $q + 1 \langle \rho \rangle$ -invariant subgroups of order q. As x_1y and x_2z are in W_0 there is some power of ρ mapping x_1 onto x_2 and y onto z. But then the same power maps y_1 onto y_2 and \bar{y} onto \bar{z} , so $y_1\bar{y}, y_2\bar{z}$ are contained in some subspace W_3 . We may assume that W_3 acts quadratically. Denote by $W_4 = \langle x_1y_1, \ldots, x_ny_n \rangle$, a diagonal of W_1W_2 . We may also assume that W_4 acts quadratically. As $y\overline{y}$, $z\overline{z}$ are in W_4 we get with (1)

$$
(2) \qquad 0 = [v, y\overline{y}, z\overline{z}] = [v, y, \overline{z}] + [v, \overline{y}, z] \text{ for any pair } y, z \in W, v \in W.
$$

Hence in our situation we have

(3)
$$
[v, y_1, \overline{z}] = [v, x_1, z]
$$
 and $[v, \overline{y}, y_2] = [v, y, x_2], v \in V$

and

(4)
$$
0 = [v, y_1\overline{y}, y_2\overline{z}] = [v, y_1, \overline{z}] + [v, \overline{y}, y_2].
$$

So by (2) and (3) we have

(5)
$$
[v, x_1, z] = [v, y, x_2], v \in V.
$$

This gives $[v, x_1y, x_2z] = [v, x_1, z] + [v, y, x_2] = 0$ by (5).

LEMMA (0.3) ([S]): Let G be a Chevalley group over $GF(q)$ and V be an ir*reducible GF(2)G-module. Then* $C_V(K)$ *is an irreducible GF(2)P-module for* any parabolic P of G, where $K = O_2(P)$.

LEMMA (0.4) :

- (a) Let G be a Chevalley group over $GF(q)$, P_1, \ldots, P_n be the set of minimal parabolics of G containing a given Sylow 2-subgroup. Set $K_i = O_2(P_i)$, $i = 1, \ldots, n$. Let V be an *irreducible module over* $GF(q)$ *. Then V is* uniqueley determined by the action of P_i on $\mathcal{C}_V(K_i)$, $i = 1, \ldots, n$.
- (b) If $V = V(\lambda)$, $\lambda = \sum_{i=1}^{n} a_i \lambda_i$, *a* fundamental weights, then (a) says that $i=1$ whenever P_i acts nontrivially on $\mathcal{C}_V(K_i)$, we get $a_i \neq 0$, otherwise $a_i = 0$.
- *(c) Let V be as in (b). If all* $\mathcal{C}_V(K_i)$ *are trivial for all but one i = i₀ and* $\mathcal{C}_V(K_{i_0})$ is a natural module, then $V = V(\lambda)$ for some fundamental weight *A.*

Proof: (a) is [RS], while (b) and (c) are easy consequences from (a). \blacksquare

A consequence of (0.4) we will use quite often is

LEMMA (0.5): Let G be a Chevalley group over $GF(q)$, $G \not\cong L_n(q)$, and R be some long root subgroup. Let $Q = O_2(N_G(R))$, $S \in Syl_2(N_G(R))$ and P_i the *minimal parabolic with* $S \subseteq P_i$, $P_i \nsubseteq N_G(R)$, $O^{2'}(P_i/O_2(P_i)) \cong L_2(q)$. Let V be *some irreducible nontrivial module for G over* $GF(q)$ *with* $[V, R, Q] = 0$ *. Suppose that there is some* $g \in G$ *such that* $R^g \subseteq Q$ *,* $R^g \neq R$ *and* $(RR^g) \subseteq x^G$ *for* $x \in R^{\sharp}$. *Then* $O^{2'}(P_i)$ has a fixed point on V. Furthermore if $V = V(\lambda), \lambda = \sum_{i=1}^n a_i \lambda_i$, λ_i fundamental weights, then the coefficient a_i of λ_i corresponding to P_i is zero.

Proof: As $G \not\cong L_n(q)$, we have that $N_G(R)$ is a maximal parabolic of G. Now we are going to apply (0.1) to $\langle x, x^g \rangle, x \in R^{\sharp}$. As $\mathcal{C}_G(x) = \mathcal{C}_G(R)$ we get $G = \langle \mathcal{C}_G(x), \mathcal{C}_G(x^g) \rangle$. So by (0.1) $0 \neq [V, x] \cap [V, x^g] = U$. Now $\langle Q, Q^g \rangle$ centralizes U and so $S\langle Q, Q^g \rangle = O^{2'}(P_i)$ has a fixed point on V, i.e. $a_i = 0$ by $(0.4).$

LEMMA (0.6): Let $G \simeq Sz(q)$, and let V an irreducible $GF(2)G$ -module. Then $[V, Z(S), S] \neq 0$, for $S \in Syl_2(G)$.

Proof: Suppose false. Then $[V, Z(S), Z(S)] = 0$. Any two conjugates of $Z(S)$ generate G. By [BHu;XI,§ 3] there is some involution $i \in Z(S)$ inverting some element ω of order 5 in G. As $G = \langle Z(S), Z(S)^{\omega} \rangle = \langle i, Z(S)^{\omega} \rangle$ we get

$$
V = [V, Z(S)] \oplus [V, Z(S)^{\omega}] = \mathcal{C}_V(Z(S)) \oplus \mathcal{C}_V(Z(S)^{\omega})
$$

and

$$
\mathcal{C}_V(i) \cap \mathcal{C}_V(Z(S)^{\omega}) = 0.
$$

So $\mathcal{C}_V(i) = \mathcal{C}_V(Z(S))$ and $\mathcal{C}_V(i) \cap \mathcal{C}_V(\omega) = 0$. As i normalizes $\langle \omega \rangle$ we get $\mathscr{C}_{V}(\omega) = 0$. By [Mar] *V* is the natural module. But then $[V, Z(S), S] \neq 0$, [BHu;XI,§ 31. **|**

LEMMA (0.7): Let $G = G_2(q)$, $q = 2^n$, V be a nontrivial $GF(2)G$ -module, *R* a long root subgroup of *G*. Let $G_1 = N_G(R)$, G_2 be the other minimal parabolic containing a Sylow 2-subgroup S of G_1 . Set $V_i = \mathcal{C}_V(O_2(G_i))$. If $[V_2, O^{2'}(G_2)] = 0$ and $[V, R, R] = 0$, then $[V_1, S, S] = 0$.

Proof: Set $Q = \bigcap_{q \in G_2} O_2(G_1)^g$. Then $|Q| = q^3$. Set $V_3 = \mathcal{C}_V(Q)$.

We have $V_1 \subseteq V_3$. As $\langle G_1, G_2 \rangle = G$, $V_1 \neq V_3$. We study the action of G_2 on V_3 . Let $g \in G$ such that $S = O_2(G_2)R^g$. By assumption $[V_3, R^g, R^g] = 0$. As S/Q is isomorphic to a Sylow 2-subgroup of $L_3(q)$, there is an elementary abelian group W of order q^2 in S/Q such that $S/Q = W(O_2(G_2)/Q)$ and $R^qQ/Q \subseteq$ W. As W carries the structure of a 2-dimensional vectorspace over $GF(q)$ and R^gQ/Q corresponds to a one-space, we get with (0.2) that $W \cap O_2(G_2)/Q$ acts quadratically on V_3 . Now also $O_2(G_2)/Q$ carries the structure of a 2-dimensional vectorspace over $GF(q)$ and $W \cap O_2(G_2)/Q$ is a one-space. Now any one-space in $O_2(G_2)/Q$ acts quadratically on V_3 as all one-spaces in $O_2(G_2)/Q$ are conjugate under G_2 . There is a subgroup T of $O_2(G_2)$ such that TQ/Q is a one-space in $O_2(G_2)/Q$ and $TO_2(G_1) = S$. Hence $[V_1, T, T] \subseteq [V_3, T, T] = 0$ and so $[V_1, S, S] =$ **0. |**

For what follows we fix the following: Let M be some irreducible $GF(2)$ module for $G = G(q)$. Then $M \otimes GF(q)$ is a direct sum of algebraic conjugates of some irreducible $GF(q)$ -module $V.$ If $M \otimes GF(q)$ is an algebraic conjugate of a fundamental module for some fundamental weight λ we write $M = V(\lambda)$.

As the assumptions of the theorem and the corollaries are independent of the field, it is enough to prove the theorems for V to be an irreducible $GF(q)$ -module, where G is defined over $GF(q)$.

1. Some special modules

Hypothesis 1: Let G be a Chevalley group over $GF(q)$, $q = 2^m$. Let R be some root group and $Q = Z_2(O_2(N_G(R)))$. In case $G \cong Sp(2n, q)$ or $F_4(q)$ we assume in addition R to be long. Let V be a nontrivial irreducible $GF(q)G$ -module. Assume $[V, R, Q] = 0$.

In this chapter we always work under hypothesis 1. Remember that if G is not $L(2,q), Sp(4,q)$ or ${}^{2}F_{4}(q)$ then $R = Q'$. Furthermore in all cases but ${}^{2}F_{4}(q)$ we have $Q = O_2(N_G(R)).$

LEMMA (1.1): Let H be a maximal parabolic of G such that $[V, R, O_2(H)] = 0$. *If there is some* $g \in G$ *such that* $R^g \subseteq H - O_2(H)$ and $[R^g, S] \subseteq O_2(H)$ for some $S \in Syl_2(H)$ and $[{\mathfrak C}_V(O_2(H)), R^g] \neq 0$, then for the minimal parabolic P of *G* containing *S* but $P \nsubseteq H$ we get $[\n \mathcal{C}_V(S), O^{2'}(P)] = 0$. So if $V = V(\lambda), \lambda =$ $\sum_{i=1}^{n} a_i \lambda_i$, λ_i fundamental weights, then $a_i = 0$, where $P = P_i$.

Proof: Set $X = \mathcal{C}_V(O_2(H))$. Then by assumption $[R^g, X] \neq 0$. As $[S, R^g] \subseteq$ $O_2(H)$, we have that $[R^g, X]$ is invariant under S. This gives $\mathcal{C}_V(S) \cap [R^g, X] \neq 0$. By (0.3) $\mathcal{I}_V(S) \subseteq [R^g, X]$. So $\mathcal{I}_V(S)$ is centralized by $\langle S, O_2(H)^g \rangle \nsubseteq H$.

LEMMA (1.2) : Let $G = SL(n, q)$, $n \geq 2$, then $V = V(\lambda)$ for some fundamental weight λ .

Proof: Let first $n = 2$. Then by hypothesis 1 we have $[V, S, S] = 0$, for some Sylow 2-subgroup S of G . So the assertion follows with [Hig].

The general case we treat by induction on n. We have $n \geq 3$. Let G_1 be the stabilizer of a point and G_{n-1} be the stabilizer of a hyperplane incident to the point for G_1 in the natural representation of G. Then $N_G(R) = G_1 \cap G_{n-1}$. Let $K_i = O_2(G_i)$ and H_i a complement of K_i in $O^{2'}(G_i)$, $i = 1, n - 1$. Set $V_i = \mathcal{C}_V(K_i)$. As there are conjugates of R^g contained in H_1, H_{n-1} respectively, with $Q^g \cap H_i = Z_2(O_2(N_{H_i}(R^g)))$ we get by induction that V_i are trivial modules or fundamental modules.

Let $V = V(\lambda), \lambda = \sum_{i=1}^{n-1} a_i \lambda_i$. Now as V_1 is trivial or fundamental, we get with (0.4) that for $j > 1$ there is at most one $a_j \neq 0$. Similarly for V_{n-1} . Together we have either just one a_i is nonzero hence 1 and so $V = V(\lambda), \lambda$ a fundamental weight, or $\lambda = a_1 \lambda_1 + a_{n-1} \lambda_{n-1}$. In the latter $[V, R, H_1 \cap H_{n-1}] = 0$. Application of (1.1) now yields the contradiction $a_1 = 0 = a_{n-1}$.

LEMMA (1.3): Let G be $\Omega^+(2n, q)$, $n \geq 4$, then V is the natural or spin module.

Proof: Let G_1 , G_{n-1} , G_n be the three maximal parabolics with connected diagram, i.e. $O^{2'}(G_1/K_1) \simeq \Omega^+(2n-2, q), O^{2'}(G_{n-1}/K_{n-1}) \simeq O^{2'}(G_n/K_n) \simeq$ *SL(n,q),* where $K_i = O_2(G_i)$. Set $V_i = \mathcal{C}_V(K_i)$.

As there are conjugates of R in G_i intersecting K_i trivially, $i = 1, n, n - 1$, we may apply (1.2) or use induction. Let $V = V(\lambda)$, then this puts restrictions on the coefficients other than a_i , for $\lambda = \sum_{i=1}^n a_i \lambda_i$. So we have that V_1 is either trivial, a natural module or a spin module.

Suppose first that V_1 is trivial. Then by (1.2) both V_{n-1} , V_n are natural modules and so by (0.4) V is the natural module.

So we may assume that V_1 is nontrivial. Let $g \in G$ such that $R^g \leq Q - R$. Then by (0.5) $O^{2'}(P_2)$ has a fixed point on V and $a_2 = 0$. This shows that V_1 has to be a spin module. So we may choose notation such that $a_n = 0$. Then we get with (1.2) that V_n is the natural module and so V_{n-1} is a trivial module. Hence we have that V is a spin module.

LEMMA (1.4): Let G be $\Omega^-(2n, q)$, $n \geq 3$. Then V is the natural module or the *spin module.*

Proof: We first treat the case $n = 3$. Let G_1 , G_2 be the two maximal parabolics containing a Sylow 2-subgroup S, where we choose notation such that $G_2 =$ $N_G(R)$. As R acts quadratically and $S = R^g O_2(G_2)$ for some $g \in G$, we get that $V_2 = \mathcal{C}_V(O_2(G_2))$ is either a trivial $O^2(G_2/O_2(G_2))$ module or the natural $SL(2,q)$ –module.

Suppose first that V_2 is not a trivial module. We may assume $R^g \n\leq O_2(G_1)$. Now we have $W = [V, R] \cap [V, R^g] \neq 0$. This gives that W is centralized by (Q, Q^g) . Thus $O^{2'}(G_1) = \langle Q, Q^g \rangle S$ has a fixed point on V, where $S \in Syl_2(G_1)$. So we have that V is the natural module.

Suppose now that $V_2 = [V, R]$ is a trivial module for $O^{2'}(G_2)$. Then

$$
\lbrack V, R, O_2(G_1) \rbrack = 0
$$

and so $[V, O_2(G_1), O_2(G_1)] = 0$, as $O_2(G_1)$ is generated by G_1 - conjugates of R. Now there is some $h \in G$ such that $O_2(G_1)(O_2(G_1)^h \cap G_1) = S$. Hence a Sylow 2-subgroup of $SL(2,q^2)$ acts quadratically on V_1 , which gives that V_1 is the natural $SL(2,q^2)$ -module. So by (0.4) V is the spin module.

So assume now $n \geq 4$. Let G_1 be the maximal parabolic such that $O^{2'}(G_1/K_1)$ $\simeq \Omega^-(2n-2, q), K_1 = O_2(G_1)$. Set $V_1 = \mathcal{C}_V(K_1)$. Then by induction V_1 is trivial, a natural module or a spin module for G_1 . Let G_{n-1} be the maximal parabolic containing a Sylow 2-subgroup of G_1 such that $O^{2'}(G_{n-1}/K_{n-1}) \simeq SL(n-1, q)$, $K_{n-1} = O_2(G_{n-1})$. Set $V_{n-1} = \mathcal{C}_V(K_{n-1})$. Then by (0.3) and (1.2) V_{n-1} is either trivial or a fundamental module. In particular (0.4) puts restrictions on the coefficients a_i , $V = V(\lambda)$, $\lambda = \sum_{i=1}^n a_i \lambda_i$.

Suppose first that V_1 is trivial. Then we have that V_{n-1} has to be the natural module. So just a_1 is nonzero and hence V is the natural module by (0.4) .

So let V_1 be nontrivial. Let $g \in G$ such that $R^g \leq Q - R$. Then by (0.5) we have $a_2 = 0$. Hence V_1 is the spin module. So $a_i = 0$ for $i > 1$, $i \neq n-1$. If now V_{n-1} is a trivial module we get $a_1 = 0$ and so V is the spin module. So assume that V_{n-1} is nontrivial. Then $a_1 \neq 0$ and so V_{n-1} has to be the natural module. Now by (1.1) $\mathcal{C}_V(S)$ is centralized by $O^{2'}(P_{n-1}),$ so $a_{n-1} = 0$, contradicting the fact that V_1 is a spin module.

LEMMA (1.5): Let G be $Sp(2n, q)$, $n \geq 2$, and R be a long root group. Then V *is the* natura/module or *the spin* module.

Proof: Let first $n = 2$. Let $G_1 = N_G(R)$. Then as $S = QR^g \in Syl_2(G_1)$ for suitable $g \in G$, we get that $\mathcal{C}_V(Q)$ is either a trivial or a natural $SL(2,q)$ -module for $O^{2'}(G_1/Q) \simeq SL(2,q)$.

If $\mathcal{C}_V(Q)$ is the natural module, we get that $0 \neq [V, R] \cap [V, R^g]$ is centralized by $\langle Q, Q^g \rangle$, and so $\mathcal{C}_V(S)$ is centralized by $S\langle Q, Q^g \rangle = O^{2'}(G_2)$, where G_2 is the other parabolic containing S. Hence V is the natural module by (0.4).

Let $\mathcal{C}_V(Q)$ be a trivial module. Then $[V, R, O_2(G_2)] = 0$ and so $[V, O_2(G_2), O_2]$ (G_2)] = 0, as $O_2(G_2)$ is generated by G_2 - conjugates of R. As

$$
S = O_2(G_2)(O_2(G_2)^n \cap G_2)
$$

for suitable $h \in G$, we get that $V_2 = \mathcal{C}_V(O_2(G_2))$ is the natural module for $O^{2'}(G_2/O_2(G_2)) \simeq SL(2,q)$. Then V is the spin module.

Let now $n \geq 3$. Let G_1 , G_n be the maximal parabolics containing a given Sylow 2-subgroup S such that

$$
O^{2'}(G_1/K_1) \simeq Sp(2n-2, q) \text{ and } O^{2'}(G_n/K_n) \simeq SL(n, q),
$$

where $K_i = O_2(G_i)$, $i = 1, n$. Set $V_i = \mathcal{C}_V(K_i)$, $i = 1, n$. By induction we have that V_1 is a trivial module, a natural module or a spin module. By (1.2) V_n is a fundamental module. Let

$$
V=V(\lambda), \quad \lambda=\sum_{i=1}^n a_i\lambda_i.
$$

If V_1 is trivial we get with (0.4) $a_i = 0$ for $i \neq 1$. So $a_1 \neq 0$ and V is the natural module.

So suppose that V_1 is nontrivial. Choose $R^g \leq Q - R$. Then (0.5) yields $a_2 = 0$. In particular we get that V_1 is a spin module, implying $a_n \neq 0$. If V_n is trivial, we get that V is the spin module. So assume that V_n is the natural module. But as in (1.4) we get that $\mathcal{C}_V(S)$ is centralized by $O^{2'}(P_n)$ and so $a_n = 0$, a contradiction. |

LEMMA (1.6): Let G be $SU(n,q)$, or $Sp(2n,q)$, $n \geq 3$. Then $V = V(\lambda)$ for some $fundamental weight λ .$

Proof: Suppose first $G \cong SU(n, q)$. Let $n = 3$. Then we have $Q \in Syl_2(G)$. Hence by (0.3) $\mathcal{C}_V(Q)$ is an irreducible module for the torus. This gives that $\mathcal{C}_V(Q)$ is one dimensional over $GF(q^2)$ and as $[V, R] \leq \mathcal{C}_V(Q)$ we get $|[V, R]| \leq q^2$. As there are $g, h \in G$ such that $G = \langle R, R^g, R^h \rangle$, we get $|V| \leq q^6$ and so V has to be the natural module. For $n = 4$, we have $U(4, q) \simeq \Omega^-(6, q)$ and the assertion follows with (1.4).

Assume $n \geq 5$ or G a symplectic group. In the latter the assertion follows for R long with (1.5). So we may assume that R is short. Let $G_1 = N_G(R)$. Then by induction $V_1 = \mathcal{C}_V(Q)$ is a trivial module for G_1 or some fundamental module. Let V_1 be nontrivial. There is some $R^g \leq G_1 - Q$ such that $[S, R^g] \leq Q$, where $S \in$ $Syl_2(G_1)$. Now we get with (1.1) that $\mathcal{C}_V(S)$ is centralized by $\langle S, Q^g \rangle = O^{2'}(P_1)$. Further as V_1 is fundamental we get with (0.4) that $V = V(\lambda)$, $\lambda = \sum a_i \lambda_i$, where $a_i = 0$ for all but one $i, i > 1$. As $\mathcal{C}_V(S)$ is centralized by $O^{2'}(P_1)$ we get $a_1 = 0$ and so V is fundamental. If V_1 is trivial, then let G_m be the other maximal parabolic containing S with connected diagram. As $[V, R, \mathcal{C}_G(R)] = 0$, we get $[V, R, O_2(G_m)] = 0$. Now $R \subseteq O_2(G_m)$ and so $[V, \langle R^{G_m} \rangle, \langle R^{G_m} \rangle] = 0$. Hence a Sylow 2-subgroup of $P_1/O_2(P_1)$ acts quadratically on $\mathcal{C}_V(O_2(P_1)) = W$. So W is the natural module by [Hig]. Let $V = V(\lambda)$, $\lambda = \sum a_i \lambda_i$. We have by (0.4) $a_1 \neq 0$ and $a_i = 0$ for $i > 1$. So V is the natural module.

LEMMA (1.7): Let G be $E_n(q)$, $n = 6, 7, 8$, with Dynkin diagram

$$
\begin{array}{cccc}\n1 & 2 & 3 & 5 & \dots & 0 & n \\
& & 0 & \dots & 0 & \dots & 0 \\
& & & 0 & & \\
& & & 0 & & \\
& & & 4 & & \n\end{array}
$$

Then one of the following holds:

- *(i)* $n = 6$ and $V = V(\lambda_1)$ or $V(\lambda_6)$
- *(ii)* $n = 7$ and $V = V(\lambda_7)$.

Proof."

- (i) Let $G = E_6(q)$. Then $N_G(R) = G_4$. Furthermore $O^2(G_4/Q) \simeq SL(6, q)$. So by (1.2) $V_4 = \mathcal{C}_V(Q)$ is trivial or a fundamental module. Let $R^g \leq Q - R$. Then by (0.5) $\mathcal{C}_V(S)$ is centralized by $O^{2'}(P_4)$ for $S \in Syl_2(P_4)$, so if $V = V(\lambda)$, $\lambda = \sum_{i=1}^{6} a_i \lambda_i$, then $a_4 = 0$. Now some a_i , $i \neq 4$, has to be nonzero. We have that $O^{2'}(G_1/K_1) \simeq O^{2'}(G_6/K_6) \simeq \Omega^+(10, q)$, where $K_i = O_2(G_i)$, $i = 1, 6$. Now by (1.3) $V_i = \mathcal{C}_V(G_i)$ is trivial, a natural module or a spin module for $O^{2'}(G_i/K_i)$, $i = 1, 6$. Now V_1 implies that $a_3 = a_5 = 0$ and at most one of a_2 or a_6 is nonzero. Furthermore V_6 implies that $a_2 = a_3 = 0$ and at most one of a_1 or a_5 is nonzero. This shows that $a_2 = a_3 = a_4 = a_5 = 0$. As V_4 is fundamental we get exactly one of a_1 or a_6 is nontrivial, the assertion.
- (ii) Let $G \simeq E_7(q)$. Then $G_1 = N_G(R)$. We have $O^2(G_1/Q) \simeq \Omega^+(12, q)$. So by (1.3) $V_1 = \mathcal{C}_V(Q)$ is a trivial, natural or spin module for $\Omega^+(12, q)$. Application of (0.5) shows that $[{\mathcal{C}}_V(S), O^{2'}(P_1)] = 0$. Let $V = V(\lambda)$, $\lambda = \sum_{i=1}^{7} a_i \lambda_i$, λ_i fundamental weights. We have $a_1 = 0$ by (0.5) and in any case $a_6 = 0$. Further exactly one of a_i , $i \neq 1, 6$, is nonzero. Hence V_1 is nontrivial. As there is some conjugate $R^g \leq G_7 - O_2(G_7)$, we may apply

(i). As $a_1 = a_6 = 0$ we get $[\mathcal{C}_V(S), O^{2'}(G_7)] = 0$ and so $a_i = 0$ for $i \neq 7$ and then $V = V(\lambda_7)$.

(iii) Let now $G \simeq E_8(q)$. Then $G_8 = N_G(R)$. By (0.5) we again have that $\mathcal{C}_V(S)$ is centralized by $O^{2'}(P_8)$. By (ii) we have that $V_8 = \mathcal{C}_V(Q)$ is a trivial $O^{2'}(G_8)$ -module. Let $V = V(\lambda)$, $\lambda = \sum_{i=1}^8 a_i \lambda_i$, λ_i fundamental weights. By (0.5) $a_8 = 0$. By (ii) $a_i = 0$ for $i \neq 7$. With (1.3) applied to $V_1 = \mathcal{C}_V(O_2(G_1))$ we get $a_7 = 0$, a contradiction.

LEMMA (1.8): Let G be ${}^2E_6(q)$ or $F_4(q)$ with Dynkin diagram

$$
\overset{1}{0}\,\text{---}\,\overset{2}{0}\,\text{---}\,\overset{3}{0}\,\text{---}\,\overset{4}{0}
$$

Choose notation such that $N_G(R) = G_1$, then $V = V(\lambda_4)$.

Proof: By (0.5) we have that $[$ $\mathcal{C}_V(S), O^{2'}(P_1)] = 0, S \in Syl_2(G_1)$. So V_1 is a nontrivial module. Furthermore there is some conjugate $R^g \in G_1 - Q$, such that $R^g \leq Z(O_2(G_4))$. This gives $O^{2'}(G_4) = \langle Q, Q^g \rangle S$. As $V_1 \subseteq [V, R]$ we have $[V, R] \cap [V, R^g] \neq 0$ and so we get that $\mathcal{C}_V(O_2(G_4))$ is a trivial module. Now by (1.5), (1.6) we have that V_1 is the natural module, so $V = V(\lambda_4)$.

LEMMA (1.9) : Let G be $G_2(q)$. Then V is the natural module.

Proof: The assertion is clear for $q = 2$. So assume $q \ge 4$. Let $G_1 = N_G(R)$ and G_2 be the other maximal parabolic containing a Sylow 2-subgroup S of G. Let $V_i = \mathcal{C}_V(O_2(G_i))$, $i = 1, 2$. Then by (0.5) we have that V_2 is a trivial module. By (0.7) we have that $C_V(Q)$ is the natural G_1/Q -module. Now (0.4) yields the assertion.

LEMMA (1.10): Let G be ${}^3D_4(q)$. Then V is the natural module.

Proof: Let G_1 , G_2 be the two minimal parabolics containing a Sylow 2-subgroup S of G. Choose notation such that $G_2 = N_G(R)$. Let $K_i = O_2(G_i)$ and $V_i = \mathcal{C}_V(K_i)$, $i = 1, 2$. Then by (0.5) we have that V_1 is a trivial module.

Choose conjugates R^g , R^h such that $\langle R, R^g \rangle \trianglelefteq G_1 R^h \cap K_1 = 1, R^h \leq K_2$. Choose $x \in R$, $y \in R^g$. We have

$$
[\mathop{\rm \it U}\nolimits_V(xy),x]=[\mathop{\rm \it U}\nolimits_V(xy),y]
$$

and SO

$$
|\mathcal{C}_V(xy): \mathcal{C}_V(\langle x,y \rangle)| = |\mathcal{C}_V(xy): \mathcal{C}_{\mathcal{C}_V(xy)}(x)| =
$$

$$
|[\mathcal{C}_V(xy), x] \cap [\mathcal{C}_V(xy), y]| \le |[V, x] \cap [V, y]| \le |[V, R] \cap [V, R^g]|.
$$

As $xy \sim x$ we get

(1)
$$
|\mathcal{C}_V(x): \mathcal{C}_V(\langle x,y \rangle) | \leq |[V,R] \cap [V,R^g]|.
$$

Now choose $u \in R^h$. As $O^{2'}(G_1)$ acts 2-transitively on R^{G_1} and $[[V, R] \cap$ $[V, R^g], O^{2'}(G_1)]=0$, we get that $[V, R]\cap [V, R^g]=[V, (R^g)^u]\cap [V, R^g]=[V, R^g]^u\cap$ *[V, R^g]*. This shows $|[[V, R^g], u]| = |[V, R] : [V, R^g] \cap [V, R]|$. As $R^h \sim R^g$ in G_2 , we get for $x \in R$ by (1) using $[V, R^g, x] = 0$:

$$
(2) \quad |[V,R] \cap [V,R^g]| \geq |\mathcal{C}_V(x):\mathcal{C}_V(\langle x,u \rangle) \geq |[V,R^g]:\mathcal{C}_{[V,R^g]}(u)|
$$

$$
= |[[V,R^g],u]| = |[V,R] : [V,R^g] \cap [V,R]|.
$$

As $[V, R] \cap [V, R^g]$ is normalized by G_1 and centralized by $O^{2'}(G_1)$, we get that $\left|V, R\right| \cap \left|V, R^g\right|\right| \leq \left|V_1\right|$. As V_1 is trivial for $O^{2'}(G_1)$ and irreducible for a torus we get $|V_1| \leq q^3$ and so $|[V, R] \cap [V, R^g]| \leq q^3$. Furthermore $[V, R]$ is a nontrivial module for $L_2(q^3)$ which shows $|[V,R]| \geq q^6$. Hence by (2) $|[V,R]| = q^6$ and $\left| [V, R] \cap [V, R^g] \right| = q^3$. If $q \neq 2$, then we have $\mathcal{C}_{[V, R]}(S) = \mathcal{C}_{[V, R]}(s)$ for any $s \in S^*$. If $q = 2$ the same is true as any involution in S inverts an element of order 7 in $SL(2,8) \simeq G_2/K_2$. So S acts quadratically on [V, R]. Hence V_2 is the natural $SL(2, q^3)$ -module. So by (0.4) we get the assertion.

LEMMA (1.11): $G \not\cong {}^{2}F_{4}(q)$.

Proof. Suppose false. The proof follows $[MeiStr(2.17)]$ where the case of the Tits group has been treated. Let G_1 , G_2 be the two minimal parabolics containing a Sylow 2-subgroup S. Choose notation such that $G_1 = N_G(R)$. Let Γ be the coset graph with respect to G_1 and G_2 . Let $(1, 2, 3, 4, 5)$ be a path of length 4 in Γ with " $G_1 = G_1$ " and " $G_2 = G_2$ ". Set $Z_2 = \langle R^{G_2} \rangle$ and $U_1 = \langle Z_2^{G_1} \rangle$, then $U_1 = Q$. We know that $[V, R, U_1] = 0$. As $U_1 \nleq O_2(G_3) \nleq U_5$ we get $\langle U_1, U_5 \rangle O_2(G_3) \geq O^2(G_3)$. As $U_1 \cap U_5$ is centralized by $\langle U_1, U_5 \rangle$, we see $|U_1 \cap U_5| \leq q$. Now $|U_1 \cap O_2(G_3)| = q^4$, which gives $U_1 \cap O_2(G_3) \nleq U_3$. So we get $\langle U_1, U_5 \rangle \geq O^2(G_3)$ and $\langle O^2(G_3) \cap G_1 \rangle R = G_1 \cap G_2$. Moreover $\langle U_1, U_5 \rangle$

centralizes $[\mathcal{I}_V(U_1), Z(O_2(G_5))]$ and hence $G_1 \cap G_2$ centralizes $[U, Z(O_2(G_5))]$ for any chief factor U of G_1 in $\mathcal{I}_V(U_1)$. As $O^{2'}(G_1/O_2(N_G(R))) \simeq Sz(q)$ we get with (0.6) that $[U, O^{2'}(G_1)] = 1$. Hence we have that $[\mathcal{C}_V(Q), O^{2'}(G_1)] = 1$.

Choose now $R^g \leq Q - R$. Then (0.5) shows that $\mathcal{C}_V(S)$ is centralized by $O^{2'}(G_2)$. But then $\mathcal{C}_V(S)$ is centralized by G, a contradiction.

Now $(1.1) - (1.11)$ and (0.6) prove the Theorem.

2. Strong quadratic modules

In this chapter we are going to prove Corollary 1. So we assume

Hypothesis 2: Let G be a Chevalley group over $GF(q)$, $q = 2ⁿ$, V a nontrivial irreducible $GF(q)G$ -module and A be a nontrivial 2-subgroup of G such that $[V, A, A^g] = 0$ for any $g \in G$ with $[A, A^g] = 1$.

Choose A maximal satisfying hypothesis 2. Let $h \in G$ such that $[A, A^h] = 1$. Set $B = \langle A, A^h \rangle$. Then for $g \in G$ with $[B, B^g] = 1$ we get $[V, \langle A, A^h \rangle, \langle A^g, A^{hg} \rangle]$ = 0. By maximality of A this implies $A = B$, i.e. A is weakly closed in $C_G(A)$ with respect to G.

For the remainder of this chapter let G, V be as in hypothesis 2 and $A \leq G$ be maximal satisfying hypothesis 2.

LEMMA (2.1): Let $G \not\cong Sp(4,q)$, $G_2(2)$ and R be a long *(if* $G \cong F_4(q)$ any) root group. Suppose there is some quadratic fours group W, (with $\langle W^{N_G(R)} \rangle$) *nonabelian in case G* $\simeq SL(n,q)$ *, contained in N_G(R) such that one of the following holds*

(i) $|W \cap Z(O_2(N_G(R)))| = |W \cap R| = 2.$

(ii) $W \cap Z(O_2(N_G(R))) = 1$ and there is some $g \in G$ such that $w_1^g = w_1$, $w_2^g = w_2r$, for $1 \neq r \in R$ and $W = \langle w_1, w_2 \rangle$.

Then (G, V) satisfies the assertion of corollary 1.

Proof: Suppose (ii), then $\langle w_1, r \rangle$ satisfies (i). So we may assume that we have (i). Set $Q = Z_2(O_2(N_G(R)))$. Now we get $\langle W^{G_G(R\cap W)} \rangle \ge Q$ and as $[V, R \cap W, W \, {}^{\mathcal{C}_G(R \cap W)}] = 0$ we get $[V, R \cap W, Q] = 0$. Now $[V, R, Q] = [V, (R \cap W)]$ $W)^{N_G(R)}$, $Q^{N_G(R)}$] = 0. Application of the theorem gives that (G, V) is as in the corollary 1.

LEMMA (2.2): Let $G \not\cong SL(n,q), U(3,q), Sp(4,q), Sz(q)$ or $G_2(2)$. Let R be a *long root group.* If $A \cap R \neq 1$, *then corollary 1 holds.*

Proof: As $G \not\cong SL(2,q), U_3(q),$ or $Sz(q)$, we have R is not weakly closed in $\mathcal{C}_G(R)$. So $A \not\leq R$. If $A \not\leq Z(O_2(N_G(R)))$, then A contains a fours group satisfying (2.1)(i). (Notice $G \not\cong SL(n,q)$). So (2.1) yields the assertion. Let $A \subseteq Z(O_2(N_G(R))$. So we have $Z(O_2(N_G(R))) \neq R$ and then $G \simeq Sp(2n, q)$ or $F_4(q)$. As $N_G(R)$ acts indecomposably on $Z(O_2(N_G(R)))$ and A is weakly closed in $\mathcal{C}_G(A)$ we get $A = Z(O_2(N_G(R)))$. In case of $F_4(q)$ there is another root group L such that $L \cap A \neq 1$. Now the same argument shows $A = Z(O_2(N_G(L)))$. As $Z(O_2(N_G(R))) \neq Z(O_2(N_G(L)))$ in $F_4(q)$ we get a contradiction.

We are left with $G \simeq Sp(2n, q), n \geq 3, |A| = q^3$. Let L be a short root group $L \leq A$. Then $\langle A^{N_G(L)} \rangle = O^2(N_G(L))$. This gives $[V, L, O^{2'}(N_G(L))] = 0$. By (1.6) we get that V is the natural module and we are done.

For the remainder of this chapter we fix the following notation: Let R be a long root group centralized by A and $Q = O_2(N_G(R))$. Let S be a Sylow 2-subgroup of *NG(R)* containing A.

LEMMA (2.3): *If* $G \not\cong (S)L(n,q), {}^2F_4(q), Sp(2n,q), F_4(q), (S)U(3,q), Sz(q)$ or G2(2), *then* corollary *1 holds.*

Proof. Let $A \leq Q$. In all Chevalley groups not excluded by assumption we have $[A, Q] \leq R$ and if $a \in A - R$, then $[a, Q] = R$. So as A is weakly closed in $\mathcal{C}_G(A)$, we get either $A \subseteq R$ or $R \leq A$. Now the assertion follows with (2.2).

Let now $A \nleq Q$. Suppose $A \cap Q = 1$. Then $[N_Q(A), A] = 1$. As $\mathcal{I}_G(Q) \subseteq Q$, we have $N_Q(A) \neq Q$. Now for $x \in Q - N_Q(A), [x, A] \subseteq N_Q(A)$, we have $[A^x, A] = 1$. But A is weakly closed in $\mathcal{C}_G(A)$, a contradiction. So $A \cap Q \neq 1$.

Let $1 \neq x \in A \cap Q$. Set $Y = \mathcal{C}_Q(x)$. Choose $a \in A^{\sharp}, g \in Y$ with $a^g = ay, y \neq 1$. Then $\langle x, y \rangle$ acts quadratically on V. If $x \in R$, then (2.2) yields the assertion. Suppose $x \notin R$. If $y \notin Z(Y)$, then $\langle x, y \rangle \cap Z(O_2(N_G(R))) = 1$. Furthermore there is some $u \in Y$ with $y^u = yr$, $r \in R^{\sharp}$, as $R = O_2(N_G(R))'$. So (2.1)(ii) applies and corollary 1 holds. We are left with $y \in Z(Y)$. Let $Y_1 = [a, Y] \subseteq Z(Y)$. We have $|Q:Y| = q$ and $|Q: \mathcal{I}_Q(t)| = q$ for any $t \in Q - Z(Q)$. If $|Y_1| > q$, then there is some $t \in Q-Y$ with $x^t=xr, r \in R^{\sharp}$, but $y_1^t=y_1$ for some $y_1 \in Y_1^{\sharp}$. So either $(2.1)(ii)$ applies to $\langle y_1, x \rangle$ or $y_1 \in R$ and so $(2.1)(i)$ applies as $x \notin R$. In any case we get the assertion.

So as $[Q, A] \leq Y$, we get $|[Q/R, a]| \leq q^2$ for any $a \in A - Q$. In particular $G \not\cong E_n(q)$, $n = 6, 7, 8, {}^{2}E_6(q)$, or ${}^{3}D_4(q)$, by using Chevalley commutator formulas. So we have $G \cong (S)U(n, q)$, $G_2(q)$ or $\Omega^{\pm}(2n, q)$.

Let $G \simeq (S)U(n,q)$. Then Q/R is the natural module for $SU(n-2,q)$. So A is a group of transvections on the natural module implying $|A : A \cap Q| \leq q$ and there is some $g \in G$ such that $AQ \le QR^g$. Furthermore by (2.1) we may assume $A \cap Q \leq Z(Y)$, otherwise $\langle x, y \rangle, x \in A \cap Q, y \notin Z(Y)$ satisfies (2.1)(ii).

We have $[Z(Y), R^g] = 1$. Let $a \in A - Q$, then $a = uv, u \in Y, v \in R^g$, $[u, v] = 1$. Suppose $u \notin Z(\mathcal{C}_Q(R^g))$. Then there is some $s \in \mathcal{C}_Q(R^g)$ with $u^s = ur, r \in R^{\sharp}$. Now $a^s = ar$ but $x^s = x$. Hence $\langle x, a \rangle$ satisfies $(2.1)(ii)$ and so we have the assertion. Assume now $u \in Z(\mathcal{C}_Q(R^g))$. Then *uv* is in a conjugate of R^g and so we have the assertion with (2.2).

Let $G \cong G_2(q)$ and $L \neq N_G(R)$ be the other parabolic containing S. Set $E = O_2(L)$. As $[E, O^{2'}(L)] \neq 1$, we get as before that $A \cap E \neq 1$. As $Z(E)^{\sharp} \subseteq$ R^G , we get with (2.2) that $A \cap Z(E) = 1$ or the conclusion holds. So assume $A \cap Z(E) = 1$. Then $[A, Z(E)] = 1$ and so $A \subseteq E$. As $E' = Z(E)$ this contradicts the fact that A is weakly closed in $C_G(A)$.

So assume finally that $G \cong \Omega^{\pm}(2n, q)$. Let L be the parabolic with $O^{2'}(L/E) \cong$ $\Omega^{\pm}(2n-2, q), E = O_2(L)$. Again $A \cap E \neq 1$. If $A \subseteq E$, then by weak closure $A = E$, which with (2.2) yields the assertion. Let $A \nleq E$. As E is the natural module for $\Omega^{\pm}(2n-2, q)$, there is some $t \in A - E$ and $s \in E$ such that $[t, s] = f$ is contained in a some long root group F. So $\langle f, e \rangle, e \in E \cap A$ is a quadratic fours group. As $e \notin T$ and $Z(O_2(N_G(F))) = F$, $\langle f, e \rangle$ satisfies (2.1)(i). So we get the assertion.

In what follows we analyze the cases left in (2.3) one by one.

LEMMA (2.4) : *If G* \cong *Sp* $(2n, q)$, corollary 1 holds.

Proof: Suppose false. Let L be a short root subgroup contained in $Z(S)$ and $M = O_2(N_G(L))$. Suppose first $n = 2$. Obviously we may assume $q \neq 2$. Then $A \leq Q$ or M as any elementary abelian subgroup of S is in Q or M. As $N_G(Q)$ and $N_G(L)$ act irreducibly on Q, M , respectively, we get $A = Q$ or $A = M$ by weak closure. Now the assertion follows with the theorem.

So we have $n \geq 3$. Let $A \leq Q$. If $A \cap R \neq 1$ the assertion follows with (2.2). So we may assume $A \cap R = 1$. Now $[A, Q] \subseteq R$. If $A \nsubseteq Z(Q)$, then $\langle A^Q \rangle = \langle A, R \rangle$, contradicting $A^Q = A$ and $R \cap A = 1$. So $A \subseteq Z(Q)$. If $q > 2$,

then $N_G(Q)$ acts indecomposably on $Z(Q)$. As A is weakly closed in $Z(Q)$, we get $A = Z(Q)$, contradicting $A \cap R = 1$. So we have $q = 2$ and A is a complement of R in $Z(Q)$, i.e. $|A| = 4$. Let U be the maximal parabolic containing S such that $O^{2'}(U/O_2(U)) \cong L_n(2)$. Then $\langle A^U \rangle$ is the natural module $(n \geq 3)$, a contradiction to the fact that A is weakly closed in $C_G(A)$.

So we may assume $A \nleq Q$. We have $O^{2'}(N_G(R)/Q) \cong Sp(2n-4, q) \times L_2(q)$. By (2.2) we may assume $A \cap R = 1$. Suppose $A \cap Z(Q) \neq 1$. Let $a \in A \cap Z(Q)^{\sharp}, x \in R$ $A - Q$. Then $\langle a, x \rangle$ acts quadratically on V. So $[V, a, x \mathbb{Z}_{N_G(R)}(a)] = 0$. Hence $[V, a, Q] = 0$ because any normal subgroup of $\mathcal{C}_G(Z(Q))$ not contained in Q has to contain Q. So there is a fours group $\langle ba, a \rangle$, $ba \in R$ acting quadratically on V. Let $a \in L$. If $A \leq M$, then by weak closure $A = M$. But then $A \cap R \neq 1$, a contradiction. So we have $A \nleq M$. But as $A \cap M \nsubseteq L$ by weak closure, we get some $t \in M \cap A$, t in a long root group, which with (2.2) yields the assertion.

So we are left with $a \notin L$. Then a is an involution of type c_2 . So we may assume $b \in L$. As $a \in N_G(L)$ we get $a^{G_G(b)} \geq M$ and so $[V, b, M] = 0$. Now $[V, b, M \cap Q] = 0$. As $[V, a, Q] = 0$, we get $[V, ab, M \cap Q] = 0$. But then $[V, ab, (M \cap Q) \,^{\mathcal{C}_G(ab)}] = 0$ and so $[V, ab, Q] = 0$, and the assertion holds by the theorem.

So we just have to treat the case $A \cap Z(Q) = 1$. Now weak closure implies $A \subseteq \mathcal{C}(Z(Q))$. As in (2.3) we get that $\left|\left[Q/Z(Q),t\right]\right| \leq q^2$ for any $t \in A - Q$. This shows $|A : A \cap Q| \leq q$ and A induces transvections on both $Sp(2n-4, q)$ modules involved in $Q/Z(Q)$. Now there is some $\rho \in N_G(R)$, $o(\rho) = q + 1$, with $[A,\rho] \subseteq Q$. As $A \subseteq N(M)$, we get $A \subseteq N(M^{\rho})$ and so $A \cap M \neq 1 \neq A \cap M^{\rho}$. But $M \cap M^{\rho} = (Q \cap M) \cap (Q \cap M^{\rho}) \subseteq Z(Q)$. This shows that there is some $\langle x, y \rangle \subseteq A$, $\langle x, y \rangle \cap Z(Q) = 1, x \in M$, $y \in M^{\rho}$. Hence there is some $g \in M \cap Q$ with $y^g = yr$, $r \in R^{\sharp}$. Application of (2.1)(ii) gives the assertion.

LEMMA (2.5) : *If G* \cong $F_4(q)$, *corollary 1 holds.*

Proof: Let $A \leq Q$. If $A \nleq Z(Q)$, then $\langle A^Q \rangle = AR$. As A is weakly closed in $\mathcal{C}_G(A)$ we get $R \subseteq A$. Now (2.2) yields the assertion. So assume $A \subseteq Z(Q)$. By weak closure we get $A = Z(Q)$ and so again $R \leq A$ and (2.2) yields the assertion. So we may assume $A \nleq Q$. Now we show that we may assume that A induces transvections on $Z(Q)$. For this choose $t \in A - Q$ such that $\left|Z(Q), t\right|\geq q^2$. As $A \cap Z(Q) \neq 1$, there is a foursgroup $\langle a, b \rangle \leq Z(Q)$, $a \in A$, such that $\langle a, b \rangle$ acts quadratically on V, b is a root element, and $\langle a, b \rangle \leq O_2(\mathcal{C}_G(b)) - Z(\mathcal{C}_G(b)).$ But now (2.1)(i) yields the assertion.

So assume that A induces transvections on $Z(Q)$. This shows $|A : A \cap Q| \leq q$ and $\left|\left[A,Q/Z(Q)\right]\right| = q^4$. If $|A \cap Q : A \cap Z(Q)| > q$, then there is some foursgroup $\langle x,y \rangle \subseteq A \cap Q$ such that $\langle x,y \rangle \cap Z(Q) = 1$ and for some $h \in Q$, $x^h = x$, $y^h = yr, r \in R^{\sharp}, \text{ as } |Q: \mathcal{I}_Q(t)| = q \text{ for any } t \in Q-Z(Q). \text{ Now (2.1)}$ yields the assertion. So assume $|A \cap Q : A \cap Z(Q)| \leq q$. Let $a \in A \cap Q - Z(Q)$. Then the action of A on Q shows that there is some $g \in \mathcal{C}_Q(a) - Z(Q)$, such that $b^g = bc$, for $b \in A - Q$ and c not in the root group determined by a. But then $\langle a, c \rangle$ acts quadratically on V, and $(2.1)(i)$ yields the assertion. So assume $A \cap Q = A \cap Z(Q)$. Let L be the other type of root groups such that $LR \subseteq [Z(Q), A]$. Set $M = O_2(N_G(L))$. Then as A induces transvections on $Z(Q)$, we get $AQ \subseteq Z(M)Q$. Now $(Z(M)Q)' \subseteq Z(M)$, so $[A,Q] \subseteq Z(M)$. As $|[a,Q/Z(Q)]| = q^4$ for $a \in A - Q$, we get that $|[a,Q]L/L| = q^5$ and $[a,Q,a] = 1$. But then $[a, Q]L/L$ is centralized by a and $[[A, Q], A] = 1$. Hence $\langle A^Q \rangle$ is abelian. Now weak closure gives $|A \cap Z(M)| \geq q^5$. But then as $|Z(M): Z(M) \cap Q| = q$, we get $|A \cap Q| = |A \cap Z(Q)| \geq q^4$. So $|A \cap Z(Q) \cap Z(M)| \geq q^4$, but this contradicts $|Z(Q) \cap Z(M)| = q^2$.

LEMMA (2.6) : *If G* \cong *SL* (n,q) , corollary 1 holds.

Proof: Let $Q = E_1 E_2$, $E_i \trianglelefteq N_G(R)$, E_i elementary abelian, $i = 1, 2$. Then $A \leq N_G(E_1)$. As in all cases before we get $A \cap E_1 \neq 1$ by weak closure. But all elements in E_1^{\sharp} are conjugate and so we may assume $A \cap R \neq 1$.

If $A \subseteq E_1$ we get by weak closure $A = E_1$ and then the assertion with [MeiStr1;(1.6)]. So assume $A \nsubseteq E_1$. Choose $x \in R \cap A$, $y \in A - E_1$. Then $\langle x,y \rangle$ is a quadratic fours group and $U = \langle (x,y)^{N_G(R)} \rangle \ge E_1$. So $U' \neq 1$. Now we may apply (2.1) (i) to $\langle x, y \rangle$ which implies the assertion.

LEMMA $(2.7): G \not\cong {}^{2}F_{4}(q)$.

Proof: Suppose false. By (2.2) $A \cap R = 1$. So by weak closure we have $A \nleq$ $O_2(N_G(R))$. Let $t \in A - O_2(N_G(R))$. Then $|[t, Q]| = q^2$. As A is weakly closed in $\mathcal{C}(A)$ we get that either $|A \cap Q| \geq q^2$ or there is some $a \in A \cap Q$, $b \in Q$ such that $t^b = tr$, where r is not in the root group belonging to a. Hence $\langle a, r \rangle$ is a quadratic fours group. So in both cases we get a quadratic fours group in Q which is not contained in a root subgroup, which contradicts (2.1) .

LEMMA (2.8): If $G \cong Sz(q)$, then V is the natural module.

Proof: We have $A = R$. As $G = \langle R, R^g \rangle$ for any $g \in G - N_G(R)$, we get $V = [V, R] \oplus [V, R^g]$. By [Mar] V is the natural module.

LEMMA (2.9): *If* $G \cong (S)U(3,q)$, then *V* is a basic module as in corollary 1.

Proof: We have $R = A$. Let $X = \langle R, R^g \rangle \simeq SL(2,q)$ for some $g \in G$. Then we know that V involves just natural X - modules by (2.6). As any irreducible G-module is a restriction of some irreducible $SL(3,q^2)$ -module, we may assume that V is irreducible for $H = (S)L(3,q)$ and $X \leq G \leq H$. By Steinberg's tensor product lemma any irreducible H -module is a tensorproduct of algebraic conjugates of the basic modules. We may assume that all this basic modules are nontrivial. Then V involves tensorproducts of algebraic conjugates of the natural X -module. The quadratic action of X now gives that the tensor product just has one factor, i.e. V is an algebraic conjugate of a basic module. Over $GF(2)$ this means that V is a basic module.

LEMMA (2.10): If $G \cong G_2(2)$, then V is the natural module.

Proof: We have a quadratic fours group. It is easy to see that V has to be the natural 6-dimensional module.

Now Corollary 1 follows from $(2.3) - (2.10)$.

3. Quadratic fours groups

Hypothesis 3: Let G be a Chevalley group over $GF(q)$, $q = 2ⁿ$, V a nontrivial irreducible $GF(q)G$ -module. Let R be a long root subgroup of G and E be a fours group with $|E \cap R| = 2$. Assume $[V, E, E] = 0$.

For the remainder of this section we are working under hypothesis 3. We are going to prove Corollary 2.

We fix the following notation:

- (i) $\langle e \rangle = E \cap R$.
- (ii) $X = \langle E^{G(e)} \rangle$.

LEMMA (3.1): If $X \supseteq Z_2(O_2(N_G(R)))$, then the conclusion of corollary 2 holds.

Proof: As $[V, e, X] = 0$ and $\langle e^{N_G(R)} \rangle = R$, the assertion follows from the main theorem. |

LEMMA (3.2): If $G \not\cong SL(n,q)$, $Sp(2n,q)$, $F_4(q)$ or $G_2(q)$ the conclusion of corollary 2 holds.

Proof: In all other cases $\mathcal{C}_G(R)$ acts irreducibly on $Z_2(O_2(N_G(R)))/R$ and $Z_2(O_2(N_G(R))/R$ is the only minimal normal subgroup of $\mathcal{C}_G(R)/R$. So $Z_2(O_2)$ $(N_G(R)) \subseteq X$. The assertion follows with (3.1).

LEMMA (3.3): Let $G \cong SL(n,q)$, then $V = V(\lambda)$ for some fundamental weight *A.*

Proof: By (3.1) we may assume $O_2(N_G(R)) \nsubseteq X$. Let $O_2(N_G(R)) = E_1E_2$, E_i elementary abelian of order q^{n-1} , $E_i \triangleleft N_G(R)$, $i = 1, 2$. Then we may assume $X \subseteq E_1$. Assume first $X = E_1$. As $X = \langle e^{N_G(x)} \rangle$, we get $0 = [V, \langle e^{N_G(R)} \rangle, X] =$ $[V, X, X]$. As X is weakly closed in $C_G(X)$ with respect to G, the assertion follows with corollary 1.

So $X \neq E_1$. This is only possible for $n = 3$. We have that R acts quadratically on V. Furthermore $S = E_1 R^g \in Syl_2(N_G(E_1))$ for suitable $g \in G$. Set $V_1 =$ $\mathcal{C}_V(E_1)$.

If $[R^g, V_1] \neq 0$, then $\mathcal{C}_V(S)$ is centralized by $\langle S, X^g \rangle$. As $X^g \subseteq E_1^g$ and $E_1^g \cap N_G(E_1) = R$, we get $\langle S, X^g \rangle = O^{2'}(N_G(E_2))$. As by [Hig] V_1 is a natural $SL(2, q)$ -module, we get with (0.4) that V is the natural module, as V_1, V_2 are like in the natural module.

If $[V_1, O^{2'}(N_G(E_1))] = 0$, then $\mathcal{C}_V(E_2)$ has to be a natural module by [Hig] as $S = E_2 R^h$ for suitable $h \in G$, $S \in Syl_2(N_G(E_2))$. Now again by (0.3) V is a natural module.

LEMMA (3.4): Let $G \cong Sp(2n, q)$, then $V = V(\lambda)$ for some fundamental weight λ.

Proof: By (3.1) we may assume $X = Z(O_2(N_G(R)))$. Let $f \in X$, $f \in \tilde{R}$, \tilde{R} a short root subgroup. Then $[V, \langle e, f \rangle, \langle e, f \rangle] = 0$. Set $Y = \langle \langle e, f \rangle \mathcal{C}^{a(f)} \rangle$. As

 $e \in O_2(|\mathcal{C}_G(\tilde{R}))$, we get $Y = O_2(|\mathcal{C}_G(\tilde{R}))$. Furthermore $\langle f^{N_G(\tilde{R})} \rangle = \tilde{R}$ and so $[V, \tilde{R}, Y] = 0$. Now the assertion follows with (1.6).

LEMMA (3.5): Let $G \cong F_4(q)$, then $V = V(\lambda)$ for some fundamental weight λ .

Proof: By (3.1) we may assume that $X = Z(O_2(N_G(R)))$. So we may assume $E = \langle e, f \rangle, e \in R, f \in \tilde{R}, \tilde{R} \subseteq X, \tilde{R}$ a short root subgroup. As G possesses an outer automorphism α with $R^{\alpha} = \tilde{R}$, we may also assume that $\langle E^{\alpha}(\mathcal{G}) \rangle =$ $Z(O_2(N_G(\tilde{R})))$. So $E \subseteq Z(O_2(N_G(\tilde{R}))) \cap Z(O_2(N_G(R))) = R\tilde{R}$. Furthermore we have $\langle e^{N_G(R)} \rangle = R$ and $\langle f^{N_G(\tilde{R})} \rangle = \tilde{R}$. This gives

(*) $[V, R, Z(O_2(N_G(R)))] = 0 = [V, \tilde{R}, Z(O_2(N_G(\tilde{R})))].$

Now we fix a Sylow 2-subgroup S of $N_G(R)$ with $Z(S) = R\tilde{R}$. Let G_1, G_2 , G_3, G_4 be the four maximal parabolic subgroups of G containing S. Set $K_i =$ $O_2(G_i)$ and $V_i = \mathcal{C}_V(K_i)$.

Let V_i be a nontrivial module for $O^{2'}(G_i)$ for some i. There is some $g \in G$ such that for $T = R^g$ or \tilde{R}^g the following holds:

- (i) $T \subseteq G_i \backslash O_2(G_i)$.
- (ii) $[T, S] \subseteq O_2(G_i)$.
- (iii) $[V_i, T] \neq 0$.

By (0.3), (ii) and (iii) $\mathcal{C}_V(S) \subseteq [V_i, T]$ and so by (*) $\mathcal{C}_V(S)$ is centralized by $\langle S, Z(O_2(N_G(T))) \rangle$. As $Z(O_2(N_G(T))) \nsubseteq G_i$, we get that ${\mathfrak{C}}_V(S)$ is centralized by $O^{2'}(P_i)$, where P_i is the minimal parabolic subgroup containing S but not contained in *Gi.* So we have

(**) If $[V_i, O^{2'}(G_i)] \neq 0$ for some $i \in \{1, 2, 3, 4\}$, then $[\mathcal{O}_V(S), O^{2'}(P_i)] = 0$, where $S \subseteq P_i$, $P_i \nsubseteq G_i$.

From (**), we get that there is exactly one $j \in \{1, 2, 3, 4\}$ such that $\lceil \mathcal{C}_V(S), O^2 \rceil$ $(P_i) \neq 0$. As there is some $h \in G$ such that for $U = R^h$ or \tilde{R}^h we have $S =$ $O_2(P_i)U$ and $[V, U, U] = 0$ by (*), we get with [Hig] and (0.3) that $\mathcal{C}_V(O_2(P_i))$ is the natural module for $O^{2'}(P_i/O_2(P_i)) \cong SL(2, q)$. Now $V = V(\lambda_i)$ by (0.4). **|**

LEMMA (3.6): Let $G \cong G_2(q)$, then V is the natural module.

Proof: By (3.1) we may assume $X \subseteq O_2(N_G(R))$, $X \neq O_2(N_G(R))$. Let G_1, G_2 be the two maximal parabolics containing $S \in Syl_2(N_G(R))$, where $G_1 = N_G(R)$. There is some $g \in G$ such that $R^g O_2(G_2) = S$. As $R \subseteq X$, we have $[V, R, R] = 0$.

Suppose first that $[~\mathcal{C}_V(O_2(G_2)), ~O^{2'}(G_2)] \neq 0$. Then $~\mathcal{C}_V(S) \subseteq [~\mathcal{C}_V(O_2(G_2)),$ R^g and so $\mathcal{C}_V(S)$ is centralized by S and X^g . But $X^g \nsubseteq G_2$ and so $\langle S, X^g \rangle =$ $O^{2'}(G_1)$ centralizes ${\mathfrak C}_V(S)$. By (0.3) and [Hig] ${\mathfrak C}_V(O_2(G_2))$ is the natural $O^{2'}(G_2)/O_2(G_2) \cong SL(2,q)$ module. So by $(0.4)(c)$ $V = V(\lambda_2)$.

Let $f \in Z(O_2(G_2)) - R$, then $f \sim e \sim ef$. By (0.1) $W = [V, f] \cap [V, e] \neq 0$. Let $g \in G_2$ with $e^g = f$, then W is centralized by $\langle X, X^g \rangle$.

We have that W is invariant under $O_2(G_2)$ and so $W \cap \mathcal{C}_V(O_2(G_2)) \neq 0$. This shows that there is some $v \in \mathcal{L}_V(O_2(G_2))^{\sharp}$ such that v is centralized by some element $\nu \neq 1$ of odd order in $O^{2'}(G_2)$. (Notice that $\langle X^{N_G(S)} \rangle = O_2(G_1)$ and so $X \nsubseteq O^2(G_2)$. But $\mathcal{C}_V(O_2(G_2))$ is the natural module, a contradiction.

So we have that $[{\mathfrak{C}}_V(S), O^{2'}(G_2)] = 0$. As $R \subseteq X$, we get with (0.6) that $\mathcal{C}_V(O_2(G_1))$ is the natural module for $O^{2'}(G_1)/O_2(G_1)$ and so by (0.3) V is the natural module for G .

Now Corollary 2 follows from $(3.1) - (3.6)$.

References

- [BHu] N. Blackburn and B. Huppert, *Finite Groups III,* Grundlehren der mathematischen Wissenschaften 243, Springer, Berlin, 1982.
- $[**High**]$ G. Higman, *Odd characterizations of finlte simple groups,* Univ. of Michigan Lecture Notes, 1968.
- **[Hol** C. Y. Ho, On *the quadratic pairs,* J. Algebra 43-(1976), 338-358.
- **[Mar]** R. Marineau, On *2-modular representations of the Suzuki groups,* Amer. J. Math. 94 (1972), 55-72.
- [Mei] U. Meierfrankenfeld, *Quadratic modules in odd characteristic,* in preparation.
- [MeiStrl] U. Meieffrankenfeld and G. Stroth, *Quadratic GF(2)-modules* for *sporadic groups* and *alternating groups,* Comm. in Algebra 18 (1990), 2099-2140.
- [MeiStr2] U. Meierfrankenfeld and G. Stroth, *On quadratic GF(2)-modules for Cheva-Hey groups over fields* of odd order, Arch. Math. 55 (1990), 105-110.
- [PS] A. A. Premet and I. D. Suprunenko, *Quadratic* modules for *Chevalley* groups *over fields of odd characteristics,* Math. Nachr. 110 (1983), 65-96.
- **[RS]** M. Ronan and S. Smith, *Sheaves on buildings* and *modular representations* of *Chevalley group*, J. Algebra 96 (1985), 319-346.
- $[S]$ S. Smith, *Irreducible modules and parabolic subgroups,* J. Algebra **75** (1982), 286-289.
- [Th] J. G. Thompson, *Quadratic pairs*, Actes Congrés Intern. Math. 1 (1970), 375-376.
- [Ti] F. Timmesfeld, *Groups generated by k-root subgroups,* Invent. Math. 106 (1991), 575-666.