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A B S T R A C T  

For a Chevalley group G over a field of characteristic 2 we determine 
all irreducible modules V over GF(2) such that [V, R, Q] -- 0, where 
R is a long root group and Q -- Z2(O2(NG(R))). As a corollary we 
obtain a classification of those irreducible modules admitting a quadratic 
fours group E which intersect a long root group nontrivially but is not 
contained in such a group. 

I n t r o d u c t i o n  

One of the main  tools in the quite recent theory of parabolic systems is the 

knowledge of  GF(p)-modules V for the groups involved admi t t ing  quadrat ical ly 

act ing p-groups.  

Let G be a finite simple group, V a GF(p)G-module, p a prime. We call V 

quadrat ic  if there is a nontrivial  p-subgroup E of  G such tha t  IV, E ,  E] = 0. For 

p > 5 the  groups  G possessing such a module  have been studied by  J. T h o m p s o n  

[Th]. For p = 3 results have been obta ined by Ch.Ho [Ho]. The  corresponding 

modules  for the groups of Lie type have been classified by A.A. P remet  and 

I.D. Suprunenko [PS]. Similar results have been obtained by U. Meierfrankenfeld 

[Mei]. If  p = 2 the definition of a quadrat ic  module  is not  any restriction at all as 

for any involution x we have [V, x, x] = 0. So in this case we have to add a fur ther  

assumption.  In [MeiStrl] and [MeiStr2] the case of G a sporadic simple group,  

an a l ternat ing group or a group of Lie type over a field of odd  characterist ic was 
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investigated under the additional assumption that IEI > 4. Again this seems not 

to be the right condition for groups of Lie type over a field of characteristic 2, as 

root groups tend to act quadratically on many modules. So a classification, which 

might be possible, would contain a long list of modules defined over GF(q) (if G 

is defined over GF(q)) and so would be just too long for interesting applications. 

This paper is a first step in obtaining a satisfactory result for quadratic modules 

for Chevalley groups over GF(q), q = 2". We are going to prove the following 

theorem. 

THEOREM: Let G = G(q) be a Chevalley group over GF(q), q = 2". Let R be 

a long root group and Q = Z2(O2(NG(R))). Let V be a nontrivial irreducible 

GF(2)G-module with [V, R, Q] = O. Then one of the following holds: 

(i) G ~- (S)L(n,  q) or (S)U(n, q) and V = V($) for some fundamenta/weight  

(ii) G - ~l+(2n, q) or Sp(2n, q) and V is the natural  module or a spin module. 

(iii) G ~_ E~(q) and V = V(A1) or V(A6). 

(iv) G ~- ET(q) and V = V(~r). 

(v) G ~- 2Ee(q) or F4(q) and V = V(A4). 

(vi) C ~- C2(q) or SD,(q) and V is the natural module. 

In section 1 we prove the Theorem, and then in sections 2 and 3 we deduce 

the following corollaries. In fact corollary 1 had originally inspired the work of 

this paper. 

COROLLARY 1: Let G = G(q) be a Chewalley group over GF(q), q = 2", and V 

be a nontrivial irreducible GF(2)G-module. Let X be some nontrivial elementary 

abelian 2-subgroup of G such that [ V , X , X  9] = 0 whenever [ X , X  g] = 1, g E G. 

Then V is one of the modules in the theorem or G ~_ (S)U(3, q) and V is a basic 

module (8-dimensional module) or G -~ Sz(q) and V is the natural  module. 

A question like the one of corollary 1 recently occurred in a paper of Timmesfeld 

[Ti]. If E is a quadratic fours group we get the following corollary. 

COROLLARY 2: Let G = G(q) be a Chevalley group over GF(q), q = 2", and V 

be a nontrivial irreducible GF(2)G-module. Let E be a fours group such that 

[V, E, E] = O. If  E intersects some long root subgroup R of G nontrivially, but 

E ~= R, then either V is one of the modules in the theorem or G ~ Sp(2n, q) or 

F4(q) and V = V(~) for some fundamental weight ~. 
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I do not know whether a = F4(q) and V = V(12) really occurs. 

For a Chevalley group G let q(G) be the minimum value of n such that  the 

following is true: If V is an irreducible module and A is some elementary abelian 

subgroup of G with [V, A, A] = 0 and [A[ = 2",  then V is one of the modules in 

corollary 2. It would be interesting to determine q(G). 

0. Preliminaries 

LEMMA 0.1: Let G be a finite group and (x,y) < G be a fours group acting 

nontrivially on some irreducible GF(2)G-moduIe V. Let z ... y ~ xy and G = 

(Ca(s) ,  Co(t))  for any padr s, t from the triple z, y, zy  such that (s, t) = (z, y). 

Then [V, x] N [V, y] # O. 

Proof." As V is an irreducible module we have ¢,v(x) # Cv(xy) .  So 

[ Cv(x~ ) ,  x] = [ c v ( ~ y ) ,  y] # 0. 

LEMMA (0.2): Let W be a 2-group which carries the structure of  a 2-dimensional 

vectorspace over GF(q), q = 2 n. Let V be a GF(2)W-module  on which q of 

the q + 1 one-dimensional subspaces of W act quadratically. Then any one- 

dimensional subspace of W acts quadratically. 

Proof: Let W = WIW2 where W~ = ( x l , . . .  , x , ) ,  W2 = ( y , , . . .  , y , )  and W~, W2 

are one-spaces which act quadratically. We may assume n > 2. 

Let Wl,W', 6 W1, w2,w'2 6 W2, v 6 V. We first show 

(1) = [v, w2, wl ] '  -t-[v, w2, wl].' 

For this we use freely the following general facts 

[v, ab] = Iv, a] + Iv, b] + [v, a, b] and 

[v, a, b] = [v, b, a] for commuting a, b. 

We have 

z = [~,WlW~] = [~,w,]  + [~,w21 + [ ~ , , ~ , , ~ 1  = [ ~ , ~ 1  + x = [~,~11 + y 
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wher~ • e [V, W~] and y e IV, W~]. 

Now 

[,,,~,,w~,w~'~] : [z, ~ w ~ ]  : [z, wl] + [~,, w~] + [z, wl,w'~]. 
We have 

W ! [z, w~] = [~, w~, ,] as Ix, wl] = 0 by quadratic action, 

[z, w~] = [v, wl, w~] as [y, w~] = 0 by quadratic action, 
! ! [z, w~, w~] = [Iv, w2], w~, w~] = [[v, w2], w 2, wl] = 0 by quadratic 

action. 

This establishes (1). 

For proving the lemma it is enough to show that  for xly ,  x2z E W0, W0 a 

one-space in W, y , z  E W2, we get [v, xly,  x2z] = 0 for any v E V. 

Let y = I'IY~' then set y = 1-Ix~ n'. So to xly ,  x2z there correspond y ly  and 

y2z. Looking at W as a two dimensional vectorspace over GF(q) implies that 

there is an automorphism p of order q - 1 (the multiplication by field elements) 

which acts on W1 and W2 in the same way. Now the q + 1 one dimensional 

subspaces of W are just the q + 1 (p)-invariant subgroups of order q. As x ly  and 

xzz are in W0 there is some power of p mapping xl onto zz and y onto z. But 

then the same power maps Yl onto y2 and ~ onto 5, so ylfl, y25 are contained 

in some subspace W3. We may assume that W3 acts quadratically. Denote by 

W4 = ( x l y l , . . .  ,xnyn), a diagonal of W1W2. We may also assume that W4 acts 

quadratically. As yy, zz are in W4 we get with (1) 

(2) O=[v,y~,z-~]=[v,y,-g]+[v,~,z]  for an y p a i r  y, z e W , v E W .  

Hence in our situation we have 

(3) [V, yl,~] = [v,x,,z] and [v,y, y2] = [v,y, x2], v e V 

and 

(4) 0 = [v, YlY, Y2Z] 

So by (2) and (3) we have 

(8) [v, x l ,  z] = [v, y, x2 ] , ,  e y. 
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This gives [v,x]y, x2z] = [V,Xl,Z]-Jr [v,y, x21 = 0 by (5). | 

LEMMA (0.3) ([S]): Let G be a Chevalley group over GF(q) and V be an ir- 

reducible GF(2)G-module. Then (~v( g )  is an irreducible GF(2)P-module for 

any parabolic P of G, where K = 02(P). 

LEMMA (0.4): 

(a) Let G be a Chevalley group over GF(q), P1, . . . ,  Pn be the set of minimal 

parabolics of G containing a given Sylow 2-subgroup. Set Ki = 02(Pi),  

i = 1, . . . ,  n. Let V be an irreducible module over GF(q). Then V is 

uniqueley determined by the action oT Pi on ~Tv(Ki), i = 1 , . . . ,  n. 

(b) If V = V(~), ~ = ~ a ~ ,  ~ fundamental weights, then (a) says that 
i=1 

whenever  Pi acts nontrivially on ~Tv( Ki  ), we get  ai 7 ~ O, otherwise ai = O. 

(c) Let V be as in (b). If ~dl Cv(K~) are trivial for all but one i = io and 

Cv( K~ o ) is a natural  module, then V = V(A) for some fundamental weight 

A. 

Proof: (a) is [RS], while (b) and (c) are easy consequences from (a). | 

A consequence of (0.4) we will use quite often is 

LEMMA (0.5): Let G be a Chevalley group over GF(q), G ~ Ln(q), and R be 

some long root subgroup. Let Q = 02(NG(R)), S E Syl2(NG(R)) and Pi the 

minimal parabolic with S C_ Pi, Pi ~[ No(R), 02'(Pi/O2(Pi)) -~ L2(q). Let Y be 

some irreducible nontrivial module for G over GF(q) with [V, R, Q] = O. Suppose 

that there is someg E G such that R g C_ Q, Rg ~ R and (RR g) c_ x v fo rx  E R t. 

Then  02'(pi) has a fixed point on V. Fhrthermore if V = V(A),A = E ~ = I  ai.'~i, 

Ai fundamental weights, then the coefficient ai o f  )ti corresponding to Pi is zero. 

Proof: As G ~ Ln(q), we have that NG(R) is a maximal parabolic of G. Now 

we are going to apply (0.1) to (x, xg>,x C R ~. As ~'a(x) = ~TG(R) we get 

a = (d?c(x) ,  dTG(Xg)). So by (0.1) 0 • IV, x] N [V, xg] = U. Now (Q, Qg) 

centralizes U and so S(Q,Q g) = o2'(Pi) has a fixed point on V, i.e. ai = 0 by 

(0.4). . 
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LEMMA (0.6): Let G "* Sz(q), and let V an irreducible GF(2)G-module. Then 

Iv, z(s) ,  s] # o, for s • s~l~(a). 

Proof." Suppose false. Then [V, Z(S), Z(S)] = 0. Any two conjugates of Z(S) 

generate G. By [BHu;XI,§ 3] there is some involution i • Z(S)  inverting some 

element w of order 5 in G. As G = <Z(S), Z(S) '~) = (i, Z (S) ' )  we get 

v = IV, z ( s ) ]  ~ IV, z ( s )  ~1 = cv(z ( s ) )  ~ Cv(Z(S) ~) 
and 

So ¢ v ( O  = 

¢v@ ) = O. 
[BHu;XI,§ 31. 

¢~( i )  n ¢ ~ ( z ( s )  ~) = o. 

{Tv(Z(S)) and {Tv(i) f3 ~Tv(w) = O. As i normalizes (w) we get 

By [Marl V is the natural module. But then [V, Z(S), S] # O, 
| 

LEMMA (0.7): Let G = G2(q), q = 2", V be a nontrivial GF(2)G-module, 

R a long root subgroup of G. Let G1 = NG(R), G2 be the other minimal 

parabolic containing a Sylow 2-subgroup S of GI. Set V~ = Cv(O2(Gi)). If 

[V~,O2' (G2)] = 0 and [V,R,R] = O, then [V,,S,S] = O. 

Proof." Set Q = NgeG, 02(G1) g. Then IQI = q3. Set V3 = Cv(Q). 

We have V1 c__ V3. As (G1, G2) = G, V1 # V3. We study the action of G2 on Vs. 

Let g E G such that S = 02(G2)R ~. By assumption [V3, R 9, Rg] = 0. As S/Q 

is isomorphic to a Sylow 2-subgroup of L3(q), there is an elementary abelian 

group W of order q2 in S/Q such that S/Q = W(O2(G2)/Q) and RgQ/Q c_ 

w .  As W carries the structure of a 2-dimensional vectorspace over GF(q) and 

RaQ/Q corresponds to a one-space, we get with (0.2) that W N 02(G2)/Q acts 

quadratically on V3. Now also 02(G2)/Q carries the structure of a 2-dimensional 

vectorspace over GF(q) and WNO2(G2)/Q is a one-space. Now any one-space in 

02(G2)/Q acts quadratically on 113 as all one-spaces in 02(Gz)/Q are conjugate 

under G2. There is a subgroup T of 02(G2) such that TQ/Q is a one-space in 

02(a2)/O and TO2(G,) = S. Hence [V1, T, T] C_ [V3, T, T] = 0 and so [V,, S, S l = 

0. | 

For what follows we fix the following: Let M be some irreducible GF(2)-  

module for G = G(q). Then M ® GF(q) is a direct sum of algebraic conjugates 

of some irreducible GF(q)-module V. If M ® GF(q) is an algebraic conjugate of 

a fundamental module for some fundamental weight A we write M = V(A). 
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As the assumptions of the theorem and the corollaries are independent of the 

field, it is enough to prove the theorems for V to be an irreducible GF(q)-module, 

where G is defined over GF(q). 

1. Some special modules 

Hypothesis t: Let G be a Chevalley group over GF(q), q = 2 m. Let R be some 

root group and Q = Z2(O2(Na(R))). In case G z Sp(2n, q) or r,(q) we assume 

in addition R to be long. Let V be a nontrivial irreducible GF(q)G-module. 

Assume [V, R, Q] = 0. | 

In this chapter we always work under hypothesis 1. Remember that if G is not 

L(2, q), Sp(4, q) or 2F4(q) then R = Q'. Furthermore in all cases but  2F4(q) we 

have Q = 02(ga(a)) .  

LEMMA (1.1): Let g be a maximal parabolic of G such that [V, R, O2( H)] = O. 

If there is some g E G such that R g C_ g - o 2 ( g )  and [R g, S] C_ o 2 ( g )  for some 

S • Syl2(H) and [{Tv(O2(H)), a a] # O, then for the minimad parabolic P of 

G containing S but P ~= H we get [¢v(S) ,  O2'(P)] = O. So if  Y = V(A), A = 

Ein~l aiAi, Ai fundamental weights, then ai = O, where P = Pi. 

Proof: Set X = ITv(O2(H)). Then by assumption [Rg,X l # 0. As [S,R a] C 

o 2 ( g ) ,  we have that [R g, X] is invariant under S. This gives ITv(S)n[R g, X] # 0. 

By (0.3) ITv(S) _c [Rg,X]. So ~ e ( S )  is centralized by (S,O~(H) 9) ~[ H. I 

LEMMA (1.2) : Let a = SL(n, q), n >_ 2, then V = V(A) for some fundamenta/ 

weight A. 

Proof: Let first n = 2. Then by hypothesis 1 we have [V, S, S] = 0, for some 

Sylow 2-subgroup S of G. So the assertion follows with [Hig]. 

The general case we treat by induction on n. We have n > 3. Let G1 be the 

stabilizer of a point and Gn-z be the stabilizer of a hyperplane incident to the 

point for G1 in the natural representation of G. Then NG(R) = GIN Gn-z. 

Let Ki = 02(Gi) and Hi a complement of Ki in 02'(Gi), i = 1,n - 1. Set 

= ITy(Ki). As there are conjugates of R g contained in Hz, Hn-1 respectively, 

with Qg N Hi = Z2(02 (NH, (R g))) we get by induction that  r~ are trivial modules 

or fundamental modules. 
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n--1 Let V = V(),), ~ = ~ i = a  ai.ki. Now as V1 is trivial or fundamental,  we get 

with (0.4) that  for j > 1 there is at most one aj ~ O. Similarly for V,,-1. Together 

we have either just one ai is nonzero hence 1 and so V = V(~), ,k a fundamental  

weight, or )~ = al)q +an--l'~n--1. In the latter [V,R, H1NHn-1] = 0. Application 

of (1.1) now yields the contradiction al = 0 = an-x.  | 

LEMMA (1.3): Let G be fl+(2n, q), n > 4, then V is the natural or spin module. 

Proof: Let G1, G , - i ,  Gn be the three maximal parabolics with connected 

diagram, i.e. 02'(G1/KI) ~ 12+(2n - 2, q), 02'(Gn-1/Kn_I) ~ 02'(Gn/Kn) ~__ 

SZ(n,q) ,  w h e r e  K i = O 2 ( a i ) .  S e t  Ik~ ~-- (Tv(Ki). 

As there are conjugates of R in Gi intersecting Ki trivially, i = 1,n,n - 1, we 

may apply (1.2) or use induction. Let V = V()0, then this puts restrictions on 
n 

the coefficients other than ai, for A = ~-~i=1 aiAi. So we have that  V1 is either 

trivial, a natural  module or a spin module. 

Suppose first that  V1 is trivial. Then by (1.2) both  Vn-1, Vn are natural  

modules and so by (0.4) V i s t h e  natural  module. 

So we may assume that  V1 is nontrivial. Let g E G such that  R a _< Q - R. 

Then by (0.5) 02'(P2) has a fixed point on V and a2 = 0. This shows that  V1 

has to be a spin module. So we may choose notation such that  an = 0. Then 

we get with (1.2) that  Vn is the natural  module and so Vn-1 is a trivial module. 

Hence we have that V is a spin module. | 

LEMMA (1.4):  Let G be f~-(2n, q), n > 3. Then V is the natural module or the 

spin module. 

Proof: We first treat the case n = 3. Let Ga, G2 be the two maximal  parabolics 

containing a Sylow 2-subgroup S, where we choose notation such that  G2 = 

Na(R). As R acts quadratically and S = RuO2(G2) for some g E G, we get 

that  V2 = ~v(O2(G2)) is either a trivial 02(G2/O2(G2)) module or the natural  

S L( 2, q)-module.  

Suppose first that  V2 is not a trivial module. We may assume R g < O2(G1). 

Now we have W = [V, R] N [V, R g] # 0. This gives that  W is centralized by 

(Q, Qg). Thus O2'(Ga) = (Q, Qg)S has a fixed point on V, where S E Syl2(G1). 

So we have tha t  V is the natural  module. 
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Suppose now that 112 = [V,R] is a trivial module for O2'(G2). Then 

265 

[V, R, G, )] = 0 

and so [V, O2(G1), 02(G1)] = 0, as 02(G,) is generated by G1 - conjugates of 

R. Now there is some h 6 G such that 02( G, )( O2( G, ) h N G1) = S. Hence a 

Sylow 2-subgroup of SL(2, q2) acts quadratically on V1, which gives that V1 is 

the natural  SL(2,q2)-module. So by (0.4) V is the spin module. 

So assume now n > 4. Let G1 be the maximal parabolic such that 02'(G1/K1) 

_ ~ - ( 2 n - 2 ,  q), K1 = 02(G1 ). Set V~ = {Tv(K~ ). Then by induction V1 is trivial, 

a natural module or a spin module for G1. Let G , -1  be the maximal parabolic 

containing a Sylow 2-subgroup of G~ such that 02' ( G , - 1 / K , - 1 )  ~ S L ( n -  1, q), 

K , - 1  = O2(G,-1) .  Set V,,-~ = ~Tv(K,-1). Then by (0.3) and (1.2) V,-1 is 

either trivial or a fundamental module. In particular (0.4) puts restrictions on 

the coefficients a~, V = V(A), A = )-~=1" aiAi. 
Suppose first that 1/1 is trivial. Then we have that V,-1 has to be the natural 

module. So just al is nonzero and hence V is the natural module by (0.4). 

So let V1 be nontrivial. Let g 6 G such that R g < Q - R. Then by (0.5) we 

have a2 = 0. Hence V1 is the spin module. So ai = 0 for i > 1, i # n - 1. If now 

V,-1 is a trivial module we get al = 0 and so V is the spin module. So assume 

that V,-1 is nontrivial. Then al # 0 and so V,-x has to be the natural module. 

Now by (1.1) (~v(S) is centralized by 02'(P,_1), so a,,_l = 0, contradicting the 

fact that V1 is a spin module. 1 

LEMMA (1.5): Let G be Sp(2n, q), n > 2, and R be a long root group. Then V 
is the na tura /module  or the spin module. 

Proof.: Let first n = 2. Let G1 = N6(R). Then as S = QR g 6 Syl2(G1) for 

suitable g 6 G, we get that (Z'v(Q) is either a trivial or a natural SL(2, q)-module 

for 02' (G1/Q) ~_ SL(2, q). 
If aTv(Q) is the natural module, we get that 0 # IV, R] f3 IV, R g] is centralized 

by (Q, Qg), and so ~Tv(S) is centralized by S(Q, Qg) = 02'(G2), where G2 is the 

other parabolic containing S. Hence V is the natural  module by (0.4). 

Let ~Tv(Q) be a trivial module. Then [V, R, O2(G2)] = 0 and so IV, 02(G2), 02 
(G2)] = 0, as 02(G2) is generated by G2 - conjugates of R. As 

s = o 2 ( c 2 ) ( o 2 ( a 2 )  n a2) 
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for suitable h 6 G, we get that V2 = ~Tv(O2(G2)) is the natural module for 

02'(G2/O2(G2)) ~- SL(2, q). Then Y is the spin module. 

Let now n _> 3. Let G1, G ,  be the maximal parabolics containing a given 

Sylow 2-subgroup S such that 

02' (G1/K1) ~_ Sp(2n-  2, q) and 02' (Gn/K,)  ~- SL(n,q), 

where Ki = 02(Gi) ,  i = 1,n. Set V /=  (~v(Ki) ,  i = 1,n. By induction we have 

that V1 is a trivial module, a natural module or a spin module. By (1.2) Vn is a 

fundamental module. Let 

V = V ( A ) ,  A = ~ a / A / .  
i = 1  

If V1 is trivial we get with (0.4) ai -- 0 for i ~ 1. So al # 0 and V is the natural 

module. 

So suppose that VI is nontrivial. Choose R g < Q - R .  Then (0.5) yields as = 0. 

In particular we get that V1 is a spin module, implying an ~ 0. If Vn is trivial, 

we get that V is the spin module. So assume that V, is the natural  module. 

But as in (1.4) we get that ~v(S)  is centralized by O2'(Pn) and so an = 0, a 

contradiction. | 

LEMMA (1.6): Let G be SU(n,q), or Sp(2n, q), n > 3. Then V = V(A) for some 
fundamental weigh~ A. 

Proo£: Suppose first G ~- SU(n, q). Let n = 3. Then we have Q 6 Syl2(G). 
Hence by (0.3) ~Tv(Q) is an irreducible module for the torus. This gives that 

~Tv(Q) is one dimensional over GF(q 2) and as IV, R] _< ~v(Q)  we get ]IV, R]] < q~. 

As there are g, h 6 G such that G = (R, R y, Rh), we get [V I _< q6 and so V has to 

be the natural module. For n = 4, we have U(4, q) -- ~ - ( 6 ,  q) and the assertion 

follows with (1.4). 

Assume n >_ 5 or G a symplectic group. In the latter the assertion follows for 

R long with (1.5). So we may assume that R is short. Let G1 = No(R). Then by 

induction V1 = ~Tv(Q) is a trivial module for G1 or some fundamental module. 

Let V, be nontrivial. There is some R g < G1 - Q  such that [S, R g] _< Q, where S 6 

Syl2(G1). Now we get with (1.1) that ~Tv(S) is centralized by (S, Qg) = 02'(P1). 
Further as V1 is fundamental we get with (0.4) that V = V(A), A = ~aiA/, where 

ai = 0 for all but one i,i > 1. As ~Tv(S) is centralized by O2'(P1) we get a, = 0 
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and so V is fundamenta l .  If  V1 is trivial,  then  let G,~ be the  o ther  max ima l  

parabol ic  containing S with  connected d iagram.  As [V, R,  ~G(R)]  = 0, we get 

[V,R, O2(Gm)] = 0. Now R C_ O2(G, , )  and  so [V, (RG" ), (RG" )] = 0. Hence a 

Sylow 2 - subg roup  of P~/O2(P1) acts  quadrat ica l ly  on ~Tv(O2(P1)) = W. So W 

is the  na tu ra l  module  by [Hig]. Let V = V(A), A = EaiAi. We have  by  (0.4) 

al ~ 0 and ai = 0 for i > 1. So V is the na tu ra l  module .  | 

LEMMA (1.7) :  Let G be En(q), n = 6,7 ,8 ,  with Dynkin d iagram 

1 2 
0 0 - -  

3 5 
0 - - 0 -  . . . .  ~ 3 - - ~  

I 
0 
4 

Then one of the following holds: 

(i) n = 6 and  V = V(A1) or V(As) 

(ii)  n = 7 a n d  V = V(AT).  

Proof." 

(i)  

(ii) 

Let  G = E6(q). Then  NG(R) = G4. Fur the rmore  02'(Ga/Q) ~_ SL(6, q). 

So by  (1.2) V4 = ~Tv(Q) is t r ivial  or a fundamen ta l  module .  Let  R a < Q - R .  

T h e n  by  (0.5) (~v(S) is central ized by  02'(1"4) for S E SyI2(P4), so if 
v s = = ~-'~i=1 aiAi, then  a4 = 0. Now some hi, i ~ 4, has  to be  

nonzero.  We have tha t  02'(G1/K1) ~_ 02'(Gs/Ks)  ~_ ~+(10 ,  q), where  

Ki  = O2(Gi) ,  i = 1,6. Now by (1.3) ~ = cTv(Gi) is tr ivial ,  a na tu ra l  

modu le  or a spin module  for 02'(GdKi) ,  i = 1,6. Now V1 implies  tha t  

a3 = a5 = 0 and  at  mos t  one of a2 or as is nonzero.  Fu r the rmore  V6 implies 

t ha t  a2 = a3 = 0 and  at  mos t  one of al  or as is nonzero.  This  shows tha t  

a2 = as = a4 = a5 = 0. As V4 is fundamen ta l  we get exact ly  one of am or 

as is nontrivial ,  the assertion. 

Let G ~- ET(q). Then  G1 = NG(R). We have 02'(G1/Q) "~ ~+(12 ,  q). So 

by  (1.3) V1 = tTv(Q) is a trivial,  na tu ra l  or spin module  for ~+(12 ,  q). 

Appl ica t ion  of (0.5) shows tha t  [ (17v(S), 02 ' (P~)]  = 0. Let  V = V(A), 
7 

)~ = ~ i = 1  aiAi, Ai fundamen ta l  weights. We have  as = 0 by  (0.5) and  in 

any  case as = 0. Fur ther  exact ly  one of hi, i ~ 1,6,  is nonzero.  Hence V1 

is nontrivial .  As there  is some conjugate  R 9 _< G7 - O2(G7), we m a y  app ly  
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(iii) 

(i). As al = a6 = 0 we get [¢v(S) ,O2 ' (Gr ) ]  = 0 and so ai = 0 for i # 7 

and then V = V(,kT). 

Let now G = Es(q). Then Gs = Na(R). By (0.5) we again have that 

Cv(S) is centralized by 02'(Ps).  By (ii) we have that Vs = Cv(Q) is a 

trivial O2'(Gs)-module. Let V = V($), $ = E i S = l  ai)ti, )q fundamental 

weights. By (0.5) as = 0. By (ii) ai = 0 for i ~ 7. With (1.3) applied to 

V1 = Cv(O2(G1)) we get a7 = 0, a contradiction. | 

LEMMA (1.8): Let G be 2E6(q) or F4(q) with Dynkin diagram 

1 2 3 4 
0 0 - - 0 - - 0  

Choose notation such that Na(R) = GI, then V = V(~4). 

Proof'. By (0.5) we have that [¢v(S),O2'(PI)] = O, S ~ SyI2(Ga). So V~ is 

a nontrivial module. Furthermore there is some conjugate R g E G1 - Q, such 

that R g < Z(Oz(G4)). This gives O2'(G4) = (Q, Qg)S. As VI c [V,R] we have 

[V,R] 13 [V,R g] # 0 and so we get that Cw(O2(G4)) is a trivial module. Now by 

(1.5), (1.6) we have that V1 is the natural module, so Y = Y()~4). | 

LEMMA (1.9): Let G be G2(q). Then V is the natural module. 

Proof'. The assertion is clear for q = 2. So assume q > 4. Let G1 = Na(R) and 

G2 be the other maximal parabolic containing a Sylow 2-subgroup S of G. Let 

Vi = Cv(O2(Gi)), i = 1,2. Then by (0.5) we have that V2 is a trivial module. 

By (0.7) we have that Cv(Q) is the natural G1/Q-module. Now (0.4) yields the 

assertion. II 

LEMMA (1.10): Let G be 3D4(q). Then V is the natura/module .  

Proof'. Let G1, G2 be the two minimal parabolics containing a Sylow 2-subgroup 

S of G. Choose notation such that G2 = Na(R). Let K/ = O2(Gi) and 

Vi = Cy(Ki), i = 1, 2. Then by (0.5) we have that V1 is a trivial module. 

Choose conjugates R g, R h such that (R,R g) <1 G1 R h 13 K1 = 1, R h < K2. 

Choose x E R, y E R g. We have 

[ cv(xy) ,  x] = [ c . ( x y ) ,  

a n d  SO 
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I¢~(~y)  : ¢v( (~ ,~) ) l  = I ¢ v ( ~ )  : ¢¢~(~) (~)1  = 

I[¢v(xy),x] n [¢v(xy) ,  u]l < I[V,x] n [V, yl[ < I[V, R] n [ERa]l. 

As xy ..~ x we get 
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(i) ICy(x) : Cv((x,y)l  _< I[V,R] n [v, ngll. 

Now choose u • R a. As 02'(G~) acts 2-transitively on R al and [[V, R] A 

IV, hal, o ~'(G1)] = 0, we get that IV, Rln[Y, Ra] = IV, (na)-ln[Y, Ra] = IV, Ra]-n 
[V, Ra]. This shows ][[V, Ra],u]] = ][V,R] : [V,R a] A [V,R]]. As R h ,-, R a in G2, 

we get for x • R by (1) using [V, R a, x] = 0: 

(2) 
I[V, nl n IV, Rail > ICv(~) : Cv((~ , - ) l  > I[V, Ra] : Wtv, n,](=)l 

= I[[E na],=]l = I[V,R] : [V, na] n [V, R]I. 

As [V, R] A [V, R a] is normalized by a l  and centralized by 0 2' (G1), we get that 

IT, R] n [V, Rall < IVll. As V~ is trivial for 02'(G~) and irreducible for a toms 
we get IV~l -< q3 and so I[V, RI n IV, Rail < q3. Furthermore [V, RI is a nontrivial 
module for L2(q 3) which shows I[V,R]l > q6. Hence by (2) [[V, RII -- q6 and 

I[V,R] n [v, Rall= q~. If q # 2, then we have ~[v, al(S) = ~[V, RI(S) for any 

s • S #. If q = 2 the same is true as any involution in S inverts an element of 

order 7 in SL(2, 8) '~ G2/K2. So S acts quadratically on [V, R]. Hence V2 is the 

natural SL(2, q3)-module. So by (0.4) we get the assertion. | 

LEMMA (1.11): G ~ 2F4(q). 

Proof." Suppose false. The proof follows [MeiStr;(2.17)] where the case of the 

Tits group has been treated. Let GI, G2 be the two minimal parabolics contain- 

ing a Sylow 2-subgroup S. Choose notation such that (71 = Na(R). Let F be 

the coset graph with respect to G1 and G~. Let (1, 2, 3, 4, 5) be a path of length 

4 in F with "G1 = GI" and "G~ = G2". Set Z2 = (R a2) and U1 = (Z a' ), 
then U1 = Q. We know that [V,R,U,] = 0. As U~ ~ 02(G3) ~ U5 we 

get (U,, Us)O2(G3) >_ 02(G3). As U1 n/]5  is centralized by (/]1, U5}, we see 

[U~ A Us[ < q. Now [U1 n O2(G3)[ = q4, which gives U1 A 02(Ga) ~ U3. So 

we get (U1,Us} > OZ(G3) and (02(G3)A G1)R = G1 A G2. Moreover (U1,Us) 
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centralizes [ tTv(UI), Z(O~(Gs))] and hence a l  Cl a s  centralizes [U, Z(O2(Gs))] 
for any chief factor U of a l  in •v(U1). As 02'(G1/O2(NG(R))) ~_ Sz(q) we get 

with (0.6) that [U, O 2' (C,)] = 1. Hence we have that [Cv(O),  02' ( a l ) ]  = 1. 

Choose now R g _< Q - R. Then (0.5) shows that ~'v(S) is centralized by 

02'(G2). But then ~v(S) is centralized by G, a contradiction. | 

Now (1.1) - (1.11) and (0.6) prove the Theorem. 

2. Strong quadratic modules 

In this chapter we are going to prove Corollary 1. So we assume 

Hypothesis 2: Let G be a Chevalley group over GF(q), q = 2 n, V a nontrivial 

irreducible GF(q)G-module and A be a nontrivial 2-subgroup of G such that 

[V, A, A g] = 0 for any g E G with [A, A g] = 1. | 

Choose A maximal satisfying hypothesis 2. Let h E G such that [A, A hI = 1. 

Set B = (A, Ah). Then for g e G with [B,B g] = 1 we get IV, (A, Ah), (Ag,Aha)] 
= 0. By maximality of A this implies A = B, i.e. A is weakly closed in ~TG(A) 
with respect to G. 

For the remainder of this chapter let G, V be as in hypothesis 2 and A < G 

be maximal satisfying hypothesis 2. 

LEMMA (2.1): Let G ;k Sp(4, q), G2(2) and R be a long ( i fG ~_ r4(q) any) 

root group. Suppose there is some quadratic fours group W, (with (W N°(R)) 
nonabelian in case G ~_ SL(n, q)), contained in NG(R) such that one of the 

following holds 

(i) [W N Z(O2(NG(R)))] = IW N R I = 2. 

(ii) W N Z(O2(NG(R))) = 1 and there is some g • G such that w~ = Wl, 

w~ = w ~ ,  ~or 1 ¢ ~ • R and W = (w, , w~). 

Then (G, V) satist]es the assertion of corollary 1. 

Proof: Suppose (ii), then (w,, r) satisfies (i). So we may assume that  we 

have (i). Set Q = Z2(O~(Na(R))). Now we get (W*~(Rnw))  >_ Q = d  as 

[V, RN W,W Ca(Raw)] = 0 we get [V, RO W,Q] = O. Now [V,R,Q] = [V,(RN 
W)No(R), QNo(R)] = O. Application of the theorem gives that (G, V) is as in the 

corollary 1. 
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LEMMA (2.2): Let G 7k SL(n,q),U(3, q),Sp(4, q),Sz(q) or G2(2). Let R be a 

long root group. I/" A fq R ~ 1, then corollary 1 holds. 

Proof: As G ~ SL(2, q), Ua(q), or Sz(q), we have R is not weakly closed in 

(TG(R). So A ~ R. If A ~ Z(O2(NG(R))), then A contains a fours group 

satisfying (2.1)(i). (Notice G ~ SL(n,q)). So (2.1) yields the assertion. Let 

A C_ Z(O2(NG(R)). So we have Z(O2(NG(R))) ¢ R and then G ~- Sp(2n, q) or 

F4(q). As NG(R) acts indecomposably on Z(O2(NG(R))) and A is weakly closed 

in ~TG(A) we get A = Z(O2(NG(R))). In case of F4(q) there is another root group 

L such that L M A ¢ 1. Now the same argument shows A = Z(O2(Na(L))). As 

Z(O2(NG(R))) ~ Z(O2(Na(L))) in F4(q) we get a contradiction. 

We are left with G "~ Sp(2n, q), n > 3, IA[ = qa. Let L be a short root group 

L < A. Then (A N~(L)) = 02(NG(L)). This gives [V,L, O2'(NG(L))] = 0. By 

(1.6) we get that V is the natural module and we are done. I 

For the remainder of this chapter we fix the following notation: Let R be a long 

root group centralized by A and Q = 02(No(R)). Let S be a Sylow 2-subgroup 

of NG(R) containing A. 

LEMMA (2.3): ITG ~ (S)L(n,q),2 F4(q), Sp(2n, q), F4(q), (S)V(3, q), Sz(q) or 
G2(2), then corollary 1 holds. 

Proof." Let A < Q. In all Chevalley groups not excluded by assumption we have 

In, Q] _< R and if a e A -  R, then In, Q] = R. So as A is weakly closed in (/Ta(a), 

we get either A C_ R or R < A. Now the assertion follows with (2.2). 

Let now A 2~ Q. Suppose ANQ = 1. Then [No(A), A] = 1. As ITa(Q) c Q, we 

have No(A ) ¢ O. Now for x • O - NQ(A), [x, A] C No(A), we have [A *, A] = 1. 

But A is weakly closed in eTa(A), a contradiction. So A N Q ~ 1. 

L e t l ~ x E A N Q .  S e t Y =  (Z'Q(X). C h o o s e a • A  ~ , g • Y w i t h a  ~ = a y , y ~ l .  

Then <x, y) acts quadratically on V. If x • R, then (2.2) yields the assertion. 

Suppose x • R. I fy  ¢ Z(Y), then (x,y)NZ(O2(NG(R))) = 1. Furthermore there 

is some u E Y with y" = yr, r • R ~, as R = O~(NG(R))'. So (2.1)(ii) applies 

and corollary 1 holds. We are left with y • Z(Y). Let Y1 = In, Y] C Z(Y). We 

have IQ : Y[ = q and [Q:  (TO(t)l = q for any t • Q - Z(Q). If IYI[ > q, then 

there is s o m e t • Q - Y w i t h x  t = x r , r • R  ~,butyI = y l  for someyl  •Y1 ~. So 

either (2.1)(ii) applies to (yl,X) o r  Yl • R and SO (2.1)(i) applies as x 9~ R. In 

any case we get the assertion. 
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So as [Q,A] <_ Y,  we get I[Q/R,a]I <_ q2 for any a E A - Q. In particular 

G ~ E,(q),  n = 6,7,8,  2E6(q), or aD4(q), by using Chevalley commutator  

formulas. So we have G ~- (S)U(n, q), G2(q) or ~±(2n,  q). 

Let G ~- (S)U(n, q). Then Q / R  is the natural  module for SU(n - 2, q). So A 

is a group of transvections on the natural  module implying ]A : A M Q] ~ q and 

there is some g E G such that  AQ <_ QRz. Furthermore by (2.1) we may assume 

A N Q <_ Z(Y) ,  otherwise (x ,y ) ,x  E A N Q,y ¢. Z ( y )  satisfies (2.1)(ii). 

We have [Z(Y),Rg] = 1. Let a E A - Q ,  t h e n a  = uv, u E Y ,  v E Rg, [u, v] = 1. 

Suppose u ¢. Z((~q(Rg)). Then there is some s E (~Q(R g) with u s = ur, r E R ~. 

Now a s = ar but x s = x. Hence (x, a) satisfies (2.1)(ii) and so we have the 

assertion. Assume now u E Z(~TQ(Rg)). Then uv is in a conjugate of Rg and so 

we have the assertion with (2.2). 

Let G ~ G2(q) and L ~ Na(R)  be the other parabolic containing S. Set 

E = 02(L). As [E, O2'(L)] # 1, we get as before that  A N E  ¢ 1. As Z(E)  ~ C 

R a ,  we get with (2.2) that  A N Z(E)  = 1 or the conclusion holds. So assume 

A N Z ( E )  = 1. Then [A, Z(E)]  = 1 and so A C E.  As E '  = Z(E)  this contradicts 

the fact that  A is weakly closed in ~T6(A). 

So assume finally that  G - ~±(2n ,  q). Let L be the parabolic with 02, (L /E )  ~- 

~+(2n  - 2, q), E = 02(L). Again A N E ~ 1. If A C E,  then by weak closure 

A = E,  which with (2.2) yields the assertion. Let A ~ E.  As E is the natural  

module for ~ + ( 2 n  - 2, q), there is some t • A - E and s E E such that  [t, s] -- f 

is contained in a some long root group F.  So (f,  e), e • E N A  is a quadratic fours 

group. As e • T and Z(O2(ga(F)) )  = F ,  (f,  e) satisfies (2.1)(i). So we get the 

assertion. I 

I n  what follows we analyze the cases left in (2.3) one by one. 

LEMMA (2.4): I f  G ~- Sp(2n, q), corollary 1 holds. 

Proof" Suppose false. Let L be a short root subgroup contained in Z(S)  and 

M = 02(N6(L)'). Suppose first n = 2. Obviously we may assume q # 2. Then 

A <_ Q or M as any elementary abelian subgroup of S is in Q or M.  As Na(Q) 

and NG(L) act irreducibly on Q, M,  respectively, we get A = Q or A = M by 

weak closure. Now the assertion follows with the theorem. 

So we have n _ 3. Let A _< Q. I f A N R  ~ 1 the assertion follows with 

(2.2). So we may  assume A M R  = 1. Now [A,Q] c R. I f A  g Z(Q), then 

(A e)  = (A,R),  contradicting A Q = A and R N  A = 1. So A C_ Z(Q). If q > 2, 
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then ga(Q)  acts indecomposably on Z(Q). As A is weakly closed in Z(Q),  we 

get A = Z(Q), contradicting AMR = 1. So we have q = 2 and A is a complement 

of R in Z(Q), i.e. IA[ = 4. Let V be the maximal parabolic containing S such 

that 02'(U/O2(U)) ~- L,,(2). Then (A t]) is the natural module ( n  >_ 3), a 

contradiction to the fact that A is weakly closed in ~Tc(A). 

So we may assume A 2~ Q. We have O~'(NG(R)/Q) ~- Sp(2n-4,  q)×L2(q). By 

(2.2) we may assume A (1 R -- 1. Suppose A N Z(Q) ¢ 1. Let a E A N Z(Q)~,x e 

A - Q. Then (a, x) acts quadratically on V. So [V, a, x ¢~'a(~) (a)] = 0. Hence 

[V, a, Q] = 0 because any normal subgroup of (TG(Z(Q)) not contained in Q has 

to contain Q. So there is a fours group (ba, a), ba E R acting quadratically on 

V. Let a E L. If A < M, then by weak closure A = M. But then A ['1R ~ 1, a 

contradiction. So we have A ~ M. But as A [7 M ~ L by weak closure, we get 

some t E M M A, t in a long root group, which with (2.2) yields the assertion. 

So we are left with a ¢ L. Then a is an involution of type c2. So we may 

assume b E L. As a E NG(L) we get aCe(b) > M and so [V,b,M] = 0. Now 

[V,b, M N Q ]  = 0. As [V,a,Q] = 0, we get [V, ab, M N Q ]  = 0. But then 

[V, ab, (M N Q) ca(~b)] = 0 and so [V, ab, Q] = 0, and the assertion holds by the 

theorem. 

So we just have to treat the case A f3 Z(Q) = 1. Now weak closure implies 

A C_ (T(Z(Q)). As in (2.3) we get that I[Q/Z(Q),t]] < q2 for any t • A - Q. 

This shows I A : A N Q] _< q and A induces transvections on both Sp(2n - 4, q)- 

modules involved in Q/Z(Q). Now there is some p • NG(R), o(p) = q + 1, with 

[A,p] C Q. A s A  c_ g ( M ) ,  we get A C _ N ( M  p) and s o A f 3 M ¢  1 C A f 3 M  p. 

But M N M p = (Q N M) gl (Q gl M p) C_ Z(Q). This shows that  there is some 

(x, y) C A, (x, y) M Z(Q) = 1, x • M,  y • M p. Hence there is some g • M M Q 

with yg = yr, r • Flt. Application of (2.1)(ii) gives the assertion. I 

LEMMA (2.5): If  G ~- F4(q), corollary 1 holds. 

Proof: Let A <_ Q. If A ~ Z(Q), then (A q) = AR. As A is weakly closed in 

¢6(A)  we get R C A. Now (2.2) yields the assertion. So assume A C_ Z(Q). By 

weak closure we get A = Z(Q) and so again R < A and (2.2) yields the assertion. 

So we may assume A 2~ Q. Now we show that we may assume that A induces 

transvections on Z(Q). For this choose t E A - Q such that ][Z(Q),t]] _> q2. As 

A (1 Z(Q) # 1, there is a foursgroup (a, b I <_ Z(Q), a E A, such that  (a, b I acts 
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quadratically on V, b is a root element, and (a, b) < 02(ITa(b)) - Z((~G(b)). 

But now (2.1)(i) yields the assertion. 

So assume that A induces transvections on Z(Q). This shows [A : A N Q[ < q 

and I[A, Q/Z(Q)]I = q4. U I A n Q : A n Z(Q)I > q, then there is some foursgroup 

(x,y) C_ A N Q  such that (x,y) N Z ( Q )  = 1 and for some h • Q, x h = x, 

yh = yr, r • R t, as [Q : tTq(t)[ = q for a n y t  • Q - Z ( Q ) .  Now (2.1)(ii) 

yields the assertion. So assume [A n Q :  A N Z(Q)I <_ q. Let a • A n Q - Z(Q). 

Then the action of A on Q shows that there is some g • tTQ(a) - Z(Q), such 

that M = bc, for b • A - Q and c not in the root group determined by a. 

But then (a,c) acts quadratically on V, and (2.1)(i) yields the assertion. So 

assume A n Q = A n Z(Q). Let L be the other type of root groups such that 

LR C_ [Z(Q),A]. Set M = 02(NG(L)). Then as A induces transvections on 

Z(Q), we get AQ c_ Z(M)Q. Now (Z(M)Q)' c_ Z(M),  so [A, Q] c_ Z(M).  As 

[[a,Q/Z(Q)]I = q4 for a • A - Q, we get that I[a,Q]L/L[ = q5 and [a,Q,a] = 1. 

But then [a, Q]L/L is centralized by a and [[A, Q], A] = 1. Hence (A Q) is abelian. 

Now weak closure gives [ANZ(M)[ > qS. But then as [Z(M) : Z(M)MQ[ = q, we 

get [A n Q[ = [An Z(Q)[ > q4. So [An Z(Q) n Z(M)[ _> q4, but  this contradicts 

IZ(Q) n Z(M)I = q2. I 

LEMMA (2.6): II G -~ SL(n,q), corollary 1 holds. 

Proo£" Let Q = EIE2, Ei <1 NG(R), Ei elementary abelian, i = 1,2. Then 

A < NG(E1). As in all cases before we get A n E1 ¢ 1 by weak closure. But all 

elements in E[ are conjugate and so we may assume A n R ¢ 1. 

If A c E1 we get by weak closure A = E1 and then the assertion with 

[MeiStrl;(1.6)]. So assume A ~ El .  Choose x E R N A, y E A - El .  Then 

(x,y I is a quadratic fours group and U = ((x,y) N~(R)) >_ El. So V' ~ 1. Now 

we may apply (2.1) (i) to (x, y) which implies the assertion. 1 

LEMMA (2.7): G ~ 2F4(q). 

Proof." Suppose false. By (2.2) A n _R = 1. So by weak closure we have A 

02(NG(R)). Let t E A - O2(Na(R)).  Then [[t,Q][ = q2. As A is weakly closed 

in ¢(A)  we get that either [A N Q[ _> q2 or there is some a E A N Q, b E Q such 

that  t ~ = tr, where r is not in the root group belonging to a. Hence (a, r) is 

a quadratic fours group. So in both cases we get a quadratic fours group in Q 

which is not contained in a root subgroup, which contradicts (2.1). I 
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LEMMA (2.8): If  G ~- Sz(q), then V is the natura /module .  

Proof." We have A = R. As G = (R ,R g) for any g • G - N a ( R ) ,  we get 

Y = [V, R] $ [V, Rg]. By [Mar] Y is the natural module, l 

LEMMA (2.9): I£G "~ (S)U(3, q), then V is a basic module as in corollary 1. 

Proof: We h a v e R =  A. Let X = (R ,R g) ~_ SL(2,q) for s o m e g  • G. Then 

we know that  V involves just natural X - modules by (2.6). As any irreducible 

G-module is a restriction of some irreducible SL(3, q2)-module, we may assume 

that V is irreducible for H = (S)L(3, q) and X < G < H.  By Steinberg's 

tensor product  lemma any irreducible H-module is a tensorproduct of algebraic 

conjugates of the basic modules. We may assume that all this basic modules are 

nontrivial. Then V involves tensorproducts of algebraic conjugates of the natural  

X-module. The quadratic action of X now gives that the tensor product just 

has one factor, i.e. V is an algebraic conjugate of a basic module. Over GF(2)  

this means that  V is a basic module. | 

LEMMA (2.10): If G -~ G2(2), then V is the naturM module. 

Proof: We have a quadratic fours group. It is easy to see that V has to be the 

natural  6-dimensional module. | 

Now Corollary 1 follows from (2.3) - (2.10). 

3. Q u a d r a t i c  fours  g r o u p s  

Hypothesis 3: Let G be a Chevalley group over GF(q), q = 2", V a nontrivial 

irreducible GF(q)G-module. Let R be a long root subgroup of G and E be a 

fours group with IE n RI = 2. Assume [V, E,  E] = 0. | 

For the remainder of this section we are working under hypothesis 3. We are 

going to prove Corollary 2. 

We fix the following notation: 

(i) ( e ) = E N R .  

(ii) X = (E ca(e)). 
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LEMMA (3.1): I.f X D Z2( O2( NG( R) ) ), then the conclusion of corollary 2 holds. 

Proof'. As [V,e,X] = 0 and (e Na(R)) = R, the assertion follows from the main 

theorem. | 

LEMMA (3.2): If  G ~ SL(n,q), Sp(2n, q), F4(q) or G2(q) the conclusion of 

coro//ary 2 holds. 

Proof: In all other cases ~'G(R) acts irreducibly on Z2(O2(NG(R)))/R and 

Z2(O~(NG(R)))/R is the only minimal normal subgroup of ~'G(R)/R. So Z2(02 

(NG(R))) C_ X .  The assertion follows with (3.1). | 

LEMMA (3.3): Let G ~- SL(n,q), then V = V(~) for some fundamental weight 

A. 

Proof: By (3.1) we may assume 02(Na(R)) ~= X.  Let 02(NG(R)) -- E,  E2, E, 

elementary abelian of order q,-a, Ei <3 NG(R), { = 1,2. Then we may assume 

X C El.  Assume first X = Ea. As X = (eNa(')), we get 0 = [V, (eNa(R)),X] = 

[V, X, X]. As X is weakly closed in ~ a ( X )  with respect to G, the assertion 

follows with corollary 1. 

So X ~ El .  This is only possible for n = 3. We have that R acts quadratically 

on V. Furthermore S = E1R a • SyI2(NG(EI)) for suitable g • G. Set V~ = 

~ ' v ( E 1 ) .  

If [Rg,V1] ¢ O, then ~v(S)  is centralized by (S, Xa). As Xg C E1 g and 

= = 0 (NG(E2)). As by [Hig] V1 is a natural Ef  N NG(E,) R, we get (S, Xg) ~' 

SL(2, q)-module, we get with (0.4) that V is the natural module, as V1, V~ are 

like in the natural module. 

If [VI,02'(NG(E1))] = 0, then ~v(E2) has to be a natural module by [Hig] 

as S = E2R ~' for suitable h • G, S • SyI2(NG(E2)). Now again by (0.3) V is a 

natural module. | 

LEMMA (3.4): Let G ~- Sp(2n, q), then V = V() 0 for some fundamental weight 

Proof'. By (3.1) we may assume X = Z(O2(Na(R))). Let f E X, f E k ,  1~ 

a short root subgroup. Then [V,(e,f) ,(e,f)] = 0. Set Y = ((e , f )ca(f)) .  As 



Vol. 79, 1992 STRONG QUADRATIC MODULES 277 

e E O~(CTa(/~)), we get Y = O2(Ca( / l ) ) .  Furthermore ( I  Na(k)) = R and so 

[V,/~, Y] = 0. Now the assertion follows with (1.6). | 

LEMMA (3.5): Let G ~- F4(q), then V = V(~) for some fundamental weight A. 

Proof: By (3.1) we may assume that X = Z(O2(Na(R))). So we may assume 

E = (e, f ) ,  e E R, f E /~, / t  C_ X, /} a short root subgroup. As G possesses 

an outer automorphJsm a with R ~ = /~ ,  we may also assume that (E ca( / ) )  = 

Z(O2(NG([L))). So E C Z(O2(ga([{))) N Z(O2(NG(R))) = R[{. Furthermore 

we have (e Na(R)) = R and (fNa(~)) = /~. This gives 

(*) IV, R, Z(O2(NG(R)))] = 0 = [V, R, Z(O2(Na([~)))]. 

Now we fix a Sylow 2-subgroup S of NG(R) with Z(S) = RFI. Let G1, G2, 

Ga, G4 be the four maximal parabolic subgroups of G containing S. Set Ki = 

O2(Gi) and I'] = Cv(Ki).  
Let Vi be a nontrivial module for O2'(Gi) for some i. There is some g E G 

such that for T = R g or/~g the following holds: 

(i) T C_ Gi\O2(Gi). 

(ii) [T, S] C_ 02(Gi). 

(iii) [I~,T] # 0. 

By (0.3), (ii) and (iii) Cv(S)  C_ [V/, T] and so by (*) Cv(S)  is centralized by 

(S, Z(O2(Na(T)))). As Z(O2(Na(T))) ~= ai,  we get that {~v(S) is centralized 

by 02'(Pi), where Pi is the minimal parabolic subgroup containing S but  not 

contained in Gi. So we have 

(**) If [Vi, O2'(Gi)] • 0 for some i E {1,2,3,4}, then [Wv(S),O2'(P~)] = o, 
where S C Pi, Pi ~= Gi. 

From (**), we get that there is exactly one j  E {1, 2, 3, 4} such that [ ¢v(S) ,  0 2' 
(Pj)] ¢ 0. As there is some h E G such that for U = R h or/~h we have S = 

02(Pj)U and [V, U, U] = 0 by (*), we get with [Hig] and (0.3) that ~Tv(O2(Pj)) 
is the natural module for 02'(Pj/O2(Pj)) -~ SL(2, q). Now Y = V(Aj) by (0.4). 
| 
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LEMMA (3.6): Let G ~ G2(q), then V is the natura/module.  

Proof'. By (3.1) we may assume X C 02(NG(R)), X • 02(NG(R)). Let G1, G2 

be the two maximal parabolics containing S E SyI2(NG(R)), where G1 = NG(R). 

There is some g E G such that RgO2(G2) = S. As R C X, we have [V,R,R] = O. 

Suppose first that [~v(O2(G2)), O2'(G2)] # 0. Then (~v(S) C [(~v(O2(G~)), 

R g] and so ~Tv(S) is centralized by S and X g. But X g ~ G2 and so (S, Xg) = 

02'(G1) centralizes (~v(S). By (0.3) and [Hig] {~v(O2(G2)) is the natural 

02'(G~)/O2(G2) -~ SL(Z,q) module. So by (0.4)(c) V = V(~2). 

Let f E Z(O2(G2)) - R, then f ~ e ~ el. By (0.1) W = [V,f] N [V,e] # 0. 

Let g E G2 with eg = f ,  then W is centralized by (X, X~). 

We have that W is invariant under 02(G2) and so WN (Tv(O2(G~)) # O. This 

shows that there is some v E (~v(O2(G2)) t such that v is centralized by some 

element t~ # 1 of odd order in 02'(G2). (Notice that (X Na(s)) = O2(G1) and so 

X ~ 02(G2)). But (~v(O2(G2)) is the natural module, a contradiction. 

So we have that [(~v(S),O2'(G2)] = 0. As R C_ X, we get with (0.6) that 

(~'(02(G1)) is the natural module for O2'(G1 )/02(G1) and so by (0.3) V is the 

natural module for G. l 

Now Corollary 2 follows from (3.1) - (3.6). 
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